

Automatic Derivation of Memory

Allocations for Polyhedral

Programs

Corentin Ferry – February 19, 2024

Ph.D. Defense

1/42

 2/42

Where the programs run

Là où s’exécutent les programmes

Where the data is

Là où sont les données

Processor

Processeur

Memory

Mémoire

 2/42

Where the programs run

Là où s’exécutent les programmes

Where the data is

Là où sont les données

Processor

Processeur

Memory

Mémoire

Data exchange is… way too slow!

Les données circulent trop lentement !

https://www.sci.utah.edu/~mb/Teaching/Week3/mem-hierarchy.pdf

3/42

Prof. Sean Lee’s Slide

Multiple Memory Technologies

4/42

DDR4

1600 MHz

GDDR6

1750 MHz

HBM2E

1600 MHz

B
a

n
d

w
id

th
 (

G
B

/s
)

Access granularity (bits)

30

150

460

64 512 1024

Multiple Memory Technologies

4/42

DDR4

1600 MHz

GDDR6

1750 MHz

HBM2E

1600 MHz

B
a

n
d

w
id

th
 (

G
B

/s
)

Access granularity (bits)

30

150

460

64 512 1024

Higher bandwidth → Coarser access granularity

Programs are Still Bandwidth-Bound!
Processor
M

E
M

O
R

Y

Registers Cache

ALU

ALU

ALU
Unused data

Bandwidth

Useful data

C

O

N

T

R

O

L

L

E

R

Data used only once

Data used ≥ 2 times

5/42

Data used 0 times

Programs are Still Bandwidth-Bound!
Processor
M

E
M

O
R

Y

Registers Cache

ALU

ALU

ALU
Unused data

Bandwidth

Useful data

C

O

N

T

R

O

L

L

E

R

Data used only once

Data used ≥ 2 times

5/42

Excessive usage of memory, not

enough re-use of on-chip memories

Data used 0 times

Programs are Still Bandwidth-Bound!
Processor
M

E
M

O
R

Y

Registers Cache

ALU

ALU

ALU
Unused data

Bandwidth

Useful data

C

O

N

T

R

O

L

L

E

R

Data used only once

Data used ≥ 2 times

5/42

Excessive usage of memory, not

enough re-use of on-chip memories

Bandwidth under-utilization

due to access patterns

Data used 0 times

Programs are Still Bandwidth-Bound!

High bandwidth available, but programs still bandwidth-bound!

Processor
M

E
M

O
R

Y

Registers Cache

ALU

ALU

ALU
Unused data

Bandwidth

Useful data

C

O

N

T

R

O

L

L

E

R

Data used only once

Data used ≥ 2 times

5/42

Excessive usage of memory, not

enough re-use of on-chip memories

Bandwidth under-utilization

due to access patterns

Data used 0 times

Outline

● Introduction and Motivation

● Background

– Memory controllers

– FPGAs and High-Level Synthesis

– Polyhedral model and high-level transformations

● Proposed Solutions

● Conclusions

6/42

On the good usage of memory controllers

Address

Data 123

Latency

101 ~

987

Latency

86 ~

456

Latency

102 ~ 103

7/42

Random Access Pattern (sub-optimal)

On the good usage of memory controllers

Address

Data 123

Latency

101 ~

987

Latency

86 ~

456

Latency

102 ~ 103

7/42

Random Access Pattern (sub-optimal)

Address

Data 987

Latency

86 ~

123

Latency

101 → 104 ~

456 789 012

Burst Access Pattern (optimal)

0xA8 0xA9 0xAA 0xAB

On the good usage of memory controllers

Burst = Access consecutive addresses in a row → requires contiguity

Address

Data 123

Latency

101 ~

987

Latency

86 ~

456

Latency

102 ~ 103

7/42

Random Access Pattern (sub-optimal)

Address

Data 987

Latency

86 ~

123

Latency

101 → 104 ~

456 789 012

Burst Access Pattern (optimal)

0xA8 0xA9 0xAA 0xAB

What is an FPGA ?

Field-Programmable Gate Array

Chips that can implement any logic circuit

8/42

Daughter Card

FPGADDR

DDR

DDR

DDR

What is an FPGA ?

Field-Programmable Gate Array

Chips that can implement any logic circuit

8/42

Daughter Card

FPGADDR

DDR

DDR

DDR

Custom Hardware

What is an FPGA ?

Field-Programmable Gate Array

Chips that can implement any logic circuit

8/42

Daughter Card

FPGADDR

DDR

DDR

DDR

Memory

Unit

Compute

Units

High-Level Synthesis of FPGA Archs

for(int i = 1; i <= N-1; i++) {

 A[i] = (B[i-1] + B[i] + B[i+1]) / 3;

}

9/42

High Level

Synthesis

High-Level Synthesis of FPGA Archs

for(int i = 1; i <= N-1; i++) {

 A[i] = (B[i-1] + B[i] + B[i+1]) / 3;

}

9/42

High Level

Synthesis

+ + /

+ + /

+ + /

…

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

+ + /

+ + /

+ + /

… … …

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Fine-grain Optimizations

Pipelining

Unrolling

High-Level Synthesis of FPGA Archs

for(int i = 1; i <= N-1; i++) {

 A[i] = (B[i-1] + B[i] + B[i+1]) / 3;

}

9/42

High Level

Synthesis

+ + /

+ + /

+ + /

…

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

+ + /

+ + /

+ + /

… … …

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Fine-grain Optimizations

Pipelining

Unrolling
Task-level pipelineTask-level pipeline

Read

engine

Write

engine

Local

Memory
Compute

Global

Mem.

Burst

Burst

Memory

Unit

High-Level Synthesis of FPGA Archs

for(int i = 1; i <= N-1; i++) {

 A[i] = (B[i-1] + B[i] + B[i+1]) / 3;

}

HLS → parallel architecture + burst memory interface

9/42

High Level

Synthesis

+ + /

+ + /

+ + /

…

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

+ + /

+ + /

+ + /

… … …

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Fine-grain Optimizations

Pipelining

Unrolling
Task-level pipelineTask-level pipeline

Read

engine

Write

engine

Local

Memory
Compute

Global

Mem.

Burst

Burst

Memory

Unit

The polyhedral model

• Target: Computational kernels that admit a polyhedral representation

• Iteration space + dependence function (e.g. from Array Dataflow Analysis [1])

[1] Feautrier, P. Dataflow analysis of array and scalar references. International Journal of Parallel Programming, Springer Science and Business Media

LLC, 1991, 20, 23-53

for(int i = 0; i < N; ++i) {

 for(int j = 0; j < M; ++j) {

 C[i][j] = max(C[i][j-1], C[i-1][j], C[i-1][j-1] + W);

 }

}

Smith-Waterman kernel iteration space and dependences

i

j

analysis

10/42

The polyhedral model

• Target: Computational kernels that admit a polyhedral representation

• Iteration space + dependence function (e.g. from Array Dataflow Analysis [1])

[1] Feautrier, P. Dataflow analysis of array and scalar references. International Journal of Parallel Programming, Springer Science and Business Media

LLC, 1991, 20, 23-53

for(int i = 0; i < N; ++i) {

 for(int j = 0; j < M; ++j) {

 C[i][j] = max(C[i][j-1], C[i-1][j], C[i-1][j-1] + W);

 }

}

Smith-Waterman kernel iteration space and dependences

i

j

analysis

10/42

Dependence

all must be done before

A Locality Optimization: Loop Tiling

• Break up the iteration space → Improve Locality

Each tile’s footprint fits in local memory

• Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space

12/42

i

j

A Locality Optimization: Loop Tiling

• Break up the iteration space → Improve Locality

Each tile’s footprint fits in local memory

• Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space

12/42

i

j

Locality → all recently computed values are in cache

A Locality Optimization: Loop Tiling

• Break up the iteration space → Improve Locality

Each tile’s footprint fits in local memory

• Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space

12/42

i

j

Apply Loop Tiling for locality then look for spatial locality optimizations

Locality → all recently computed values are in cache

Many Polyhedral Locality Optimizations
● Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

11/42

Many Polyhedral Locality Optimizations
● Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

● Cache-specific optimizations

Cache miss equations [7], conflict avoidance by padding [8], etc.

11/42

Many Polyhedral Locality Optimizations
● Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

● Cache-specific optimizations

Cache miss equations [7], conflict avoidance by padding [8], etc.

● Automated in optimizing compilers (e.g. Polly [9])

11/42

[1] Zhou, X.; Giacalone, J.-P.; Garzarán, M. J.; Kuhn, R. H.; Ni, Y. & Padua, D. Hierarchical overlapped tiling. Proceedings of the Tenth International Symposium on Code

Generation and Optimization, ACM, 2012.

[2] Bondhugula, U.; Bandishti, V. & Pananilath, I. Diamond Tiling: Tiling Techniques to Maximize Parallelism for Stencil Computations.IEEE Transactions on Parallel and

Distributed Systems, Institute of Electrical and Electronics Engineers (IEEE), 2017, 28, 1285-1298ceedings of the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, ACM, 2021

[3] Rossetti, C. & Clauss, P. Algebraic Tiling. IMPACT 2023, 13th International Workshop onPolyhedral Compilation Techniques, Jan 2023, Toulouse, France, 2023

[4] Coleman, S. & McKinley, K. S. Tile Size Selection Using Cache Organization and Data Layout. SIGPLAN Not., Association for Computing Machinery, 1995, 30, 279–290

[5] Mehta, S.; Beeraka, G. & Yew, P.-C. Tile Size Selection Revisited. ACM Trans. Archit. Code Optim., Association for Computing Machinery, 2013, 10

[6] Bondhugula, U.; Hartono, A.; Ramanujam, J. & Sadayappan, P. A Practical Automatic Polyhedral Program Optimization System. ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2008

[7] Ghosh, S.; Martonosi, M. & Malik, S. Cache miss equations. ACM Transactions on Programming Languages and Systems, Association for Computing Machinery (ACM),

1999, 21, 703-746

[8] Hong, C.; Bao, W.; Cohen, A.; Krishnamoorthy, S.; Pouchet, L.-N.; Rastello, F.; Ramanujam, J. & Sadayappan, P. Effective Padding of Multidimensional Arrays to Avoid

Cache Conflict Misses. SIGPLAN Not., Association for Computing Machinery, 2016, 51, 129–144

[9] Grosser, T.; Groesslinger, A. & Lengauer, C. Polly — Performing Polyhedral Optimizations On A Low-Level Intermediate Representation. Parallel Processing Letters, World

Scientific Pub Co Pte Lt, 2012, 22, 1250010

Many Polyhedral Locality Optimizations
● Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

● Cache-specific optimizations

Cache miss equations [7], conflict avoidance by padding [8], etc.

● Automated in optimizing compilers (e.g. Polly [9])

11/42

[1] Zhou, X.; Giacalone, J.-P.; Garzarán, M. J.; Kuhn, R. H.; Ni, Y. & Padua, D. Hierarchical overlapped tiling. Proceedings of the Tenth International Symposium on Code

Generation and Optimization, ACM, 2012.

[2] Bondhugula, U.; Bandishti, V. & Pananilath, I. Diamond Tiling: Tiling Techniques to Maximize Parallelism for Stencil Computations.IEEE Transactions on Parallel and

Distributed Systems, Institute of Electrical and Electronics Engineers (IEEE), 2017, 28, 1285-1298ceedings of the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, ACM, 2021

[3] Rossetti, C. & Clauss, P. Algebraic Tiling. IMPACT 2023, 13th International Workshop onPolyhedral Compilation Techniques, Jan 2023, Toulouse, France, 2023

[4] Coleman, S. & McKinley, K. S. Tile Size Selection Using Cache Organization and Data Layout. SIGPLAN Not., Association for Computing Machinery, 1995, 30, 279–290

[5] Mehta, S.; Beeraka, G. & Yew, P.-C. Tile Size Selection Revisited. ACM Trans. Archit. Code Optim., Association for Computing Machinery, 2013, 10

[6] Bondhugula, U.; Hartono, A.; Ramanujam, J. & Sadayappan, P. A Practical Automatic Polyhedral Program Optimization System. ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2008

[7] Ghosh, S.; Martonosi, M. & Malik, S. Cache miss equations. ACM Transactions on Programming Languages and Systems, Association for Computing Machinery (ACM),

1999, 21, 703-746

[8] Hong, C.; Bao, W.; Cohen, A.; Krishnamoorthy, S.; Pouchet, L.-N.; Rastello, F.; Ramanujam, J. & Sadayappan, P. Effective Padding of Multidimensional Arrays to Avoid

Cache Conflict Misses. SIGPLAN Not., Association for Computing Machinery, 2016, 51, 129–144

[9] Grosser, T.; Groesslinger, A. & Lengauer, C. Polly — Performing Polyhedral Optimizations On A Low-Level Intermediate Representation. Parallel Processing Letters, World

Scientific Pub Co Pte Lt, 2012, 22, 1250010

Locality → well-studied, addressed issue

This work = “Spatial” locality (contiguity)

Polyhedral HLS Compiler Flow

Imperative

Annotated C

Polyhedral

Representation

Optimized

Polyhedral

Representation

Generated

Annotated C
RTL Model

FPGA

Bitstream

• Optimizations on Polyhedral Representation (very high-level)

and imperative code (high-level C/C++)

• Output : FPGA bitstream

Allocations, tiling,

schedule done here

Analysis

Code

generation

Architectural

Optimization

High-Level

Synthesis
FPGA

Synthesis

13/42

Memory access pattern optimizations

14/42

● Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, static determination at compile time

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

Memory access pattern optimizations

14/42

● Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, static determination at compile time

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

● Memory Layout for Host-Accelerator Communications:

Ozturk et al., 2009 [5]: data tiling + compression

→ Our work = finer-grain data breakdown amenable to compression

Memory access pattern optimizations

14/42

● Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, static determination at compile time

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

● Memory Layout for Host-Accelerator Communications:

Ozturk et al., 2009 [5]: data tiling + compression

→ Our work = finer-grain data breakdown amenable to compression

● Allocation from Polyhedral Representation:

Yuki and Rajopadhye, 2013 [6]: reduce memory footprint with uniform

dependences

→ Our work = objective is bandwidth utilization

[3] Dathathri, R.; Reddy, C.; Ramashekar, T. & Bondhugula, U. Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory.

Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, IEEE, 2013

[4] Zhao, T.; Hall, M.; Johansen, H. & Williams, S. Improving communication by optimizing on-node data movement with data layout Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, ACM, 2021

[5] Ozturk, O.; Kandemir, M. & Irwin, M. Using Data Compression for Increasing Memory System Utilization. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), 2009, 28, 901-914

[6] Yuki, T. & Rajopadhye, S. Memory allocations for tiled uniform dependence programs IMPACT 2013, 2013, 13

Memory access pattern optimizations

14/42

● Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, static determination at compile time

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

● Memory Layout for Host-Accelerator Communications:

Ozturk et al., 2009 [5]: data tiling + compression

→ Our work = finer-grain data breakdown amenable to compression

● Allocation from Polyhedral Representation:

Yuki and Rajopadhye, 2013 [6]: reduce memory footprint with uniform

dependences

→ Our work = objective is bandwidth utilization

[3] Dathathri, R.; Reddy, C.; Ramashekar, T. & Bondhugula, U. Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory.

Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, IEEE, 2013

[4] Zhao, T.; Hall, M.; Johansen, H. & Williams, S. Improving communication by optimizing on-node data movement with data layout Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, ACM, 2021

[5] Ozturk, O.; Kandemir, M. & Irwin, M. Using Data Compression for Increasing Memory System Utilization. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), 2009, 28, 901-914

[6] Yuki, T. & Rajopadhye, S. Memory allocations for tiled uniform dependence programs IMPACT 2013, 2013, 13

No existing compile-time, systematic data allocation

from polyhedral representation

Approaches in this dissertation

Systematically derive memory allocations from the program itself

• Goal: Lower transfer time, higher bandwidth utilization

15/42

Approaches in this dissertation

Systematically derive memory allocations from the program itself

• Goal: Lower transfer time, higher bandwidth utilization

• Methods:

• Use loop tiling for locality

• Allocate only the necessary data into global memory = low redundancy

• Access the data contiguously

15/42

Approaches in this dissertation

Systematically derive memory allocations from the program itself

• Goal: Lower transfer time, higher bandwidth utilization

• Methods:

• Use loop tiling for locality

• Allocate only the necessary data into global memory = low redundancy

• Access the data contiguously

• Solutions:

• A contiguous allocation for rectangular tiles, uniform dependences

• A contiguous, irredundant allocation for any tiling, uniform dependences

• A study on the case of broadcast dependences

15/42

Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions

16/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

Tales of Tiles: the Flow-In Iterations...

One point’s input...

17/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

Tales of Tiles: the Flow-In Iterations...
…one tile’s input

17/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

Flow-In Iterations

Tales of Tiles: the Flow-In Iterations...
…one tile’s input

17/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

Flow-In Iterations

Tales of Tiles: the Flow-In Iterations...
…one tile’s input

17/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

Flow-In Iterations

Tales of Tiles: the Flow-In Iterations...

17/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

Flow-In Iterations

Tales of Tiles: the Flow-In Iterations...

Flow-In Iterations: Data Needed to Execute One Tile

17/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

Flow-Out Iterations

18/42

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

Flow-Out Iterations: Data Needed To Execute Other Tiles

Most efficient allocation = allocation for flow-in & flow-out!

Flow-Out Iterations

18/42

Contributions of this work
● Create a memory allocation for intermediate results

– Compute data sets produced by each tile to be made contiguous

– Allocate memory for each set

19/42

Contributions of this work
● Create a memory allocation for intermediate results

– Compute data sets produced by each tile to be made contiguous

– Allocate memory for each set

● Increase data contiguity

– Apply data tiling

– Tweak the memory layout to get contiguity across data tiles

19/42

Contributions of this work
● Create a memory allocation for intermediate results

– Compute data sets produced by each tile to be made contiguous

– Allocate memory for each set

● Increase data contiguity

– Apply data tiling

– Tweak the memory layout to get contiguity across data tiles

● Mechanize the process

– Create a compiler pass automatically deriving I/O code

– Integrate the I/O code into an FPGA data-flow architecture

19/42

Contributions of this work
● Create a memory allocation for intermediate results

– Compute data sets produced by each tile to be made contiguous

– Allocate memory for each set

● Increase data contiguity

– Apply data tiling

– Tweak the memory layout to get contiguity across data tiles

● Mechanize the process

– Create a compiler pass automatically deriving I/O code

– Integrate the I/O code into an FPGA data-flow architecture

19/42

Ferry, C.; Yuki, T.; Derrien, S. & Rajopadhye, S. Increasing FPGA Accelerators Memory

Bandwidth with a Burst-Friendly Memory Layout. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Institute of Electrical and Electronics

Engineers (IEEE), 2022, 1-1

Canonical Facet Allocation (CFA)
● Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]

– Observation: flow-in data is made mostly of adjacent faces

– Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile

● Our idea : tweak the data layout

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs,"

2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. “Implementation Trade-Offs for FPGA Accelerators.” PhD Thesis, Université de Rennes 1, 2017

Contiguity inside face

Contiguity across faces

20/42

Canonical Facet Allocation (CFA)
● Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]

– Observation: flow-in data is made mostly of adjacent faces

– Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile

● Our idea : tweak the data layout

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs,"

2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. “Implementation Trade-Offs for FPGA Accelerators.” PhD Thesis, Université de Rennes 1, 2017

Contiguity inside face

Contiguity across faces

20/42

Contiguity inside a face and across neighboring faces

Canonical Facet Allocation (CFA)
● Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]

– Observation: flow-in data is made mostly of adjacent faces

– Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile

● Our idea : tweak the data layout

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs,"

2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. “Implementation Trade-Offs for FPGA Accelerators.” PhD Thesis, Université de Rennes 1, 2017

Contiguity inside face

Contiguity across faces

address

Memory

20/42

Contiguity inside a face and across neighboring faces

CFA pass

Proof-of-Concept CFA Compiler Pass

Inside the GeCoS compiler framework

Compute

Facet

Depth

Compute

Flow-In

Flow-In

ISL Sets

Flow-Out

ISL Sets

Write

Statements

+ Domains
Tiled

SCoP

Optimized

Tiled

SCoP
Select

Facets

(Contiguity)

Read

Statements

+ Domains

Add Facet

Symbols

21/42

Input C/C++

Analysis

Code Gen.

C/C++ for HLS

Validation on FPGA

Read

engine

Write

engine

DRAM

Local

Memory

(BRAM)

Pass

through

Burst Access (contigous)

FPGA

AXI

HP

AXI

HP

Scalar Access (random)

● Protocol:

– Execute I/O on FPGA

– No execution engine

● CFA vs. 3 allocations:

– Bounding box

– Original (“UOV-like”)

– Data Tiling

● Platform : Xilinx ZC706

Xilinx xc7z045ffg900-2 FPGA

Frequency 100 MHz

1 access port, full-duplex 64-bit AXI

22/42

Does CFA yield a higher bandwidth utilization ?

CFA → Higher Bandwidth Utilization

23/42

CFA → Higher Bandwidth Utilization

23/42

CFA → Higher Bandwidth Utilization

23/42

CFA → Higher Bandwidth Utilization

23/42

CFA → Higher Bandwidth Utilization

23/42

CFA brings contiguity & low redundancy → high effective bandwidth

Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions

24/42

Inter-tile communications : flow-in/out

• Iterations consumed in another tile = Flow-out

• Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

• Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

[2] Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, ACM, 2013

i

j

25/42

Inter-tile communications : flow-in/out

• Iterations consumed in another tile = Flow-out

• Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

• Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

[2] Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, ACM, 2013

i

j

25/42

Inter-tile communications : flow-in/out

• Iterations consumed in another tile = Flow-out

• Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

• Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

[2] Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, ACM, 2013

i

j

Our Idea: Split the flow-out based on consumption

25/42

Maximal Atomic irRedundant Sets (MARS)
● Partition the flow-in and flow-out of iteration tiles

– MARS = result of the partition

● Provide an algorithm and mathematical proofs for the partitioning

i

j

26/42

Ferry, C.; Derrien, S. & Rajopadhye, S. Maximal Atomic irRedundant Sets: a Usage-based

Dataflow Partitioning Algorithm. 13th International Workshop on Polyhedral Compilation

Techniques (IMPACT’23), 2023

Maximal Atomic irRedundant Sets (MARS)
● Partition the flow-in and flow-out of iteration tiles

– MARS = result of the partition

● Provide an algorithm and mathematical proofs for the partitioning

i

j

26/42

Atomicity: consume one, consume all

Ferry, C.; Derrien, S. & Rajopadhye, S. Maximal Atomic irRedundant Sets: a Usage-based

Dataflow Partitioning Algorithm. 13th International Workshop on Polyhedral Compilation

Techniques (IMPACT’23), 2023

Maximal Atomic irRedundant Sets (MARS)
● Partition the flow-in and flow-out of iteration tiles

– MARS = result of the partition

● Provide an algorithm and mathematical proofs for the partitioning

i

j

26/42

Atomicity: consume one, consume all

Irredundancy: 1 iteration 1 set∈

Ferry, C.; Derrien, S. & Rajopadhye, S. Maximal Atomic irRedundant Sets: a Usage-based

Dataflow Partitioning Algorithm. 13th International Workshop on Polyhedral Compilation

Techniques (IMPACT’23), 2023

Maximal Atomic irRedundant Sets (MARS)
● Partition the flow-in and flow-out of iteration tiles

– MARS = result of the partition

● Provide an algorithm and mathematical proofs for the partitioning

i

j

26/42

Atomicity: consume one, consume all

Irredundancy: 1 iteration 1 set∈

Maximality: adding any element violates Atomicity or Integrity

Ferry, C.; Derrien, S. & Rajopadhye, S. Maximal Atomic irRedundant Sets: a Usage-based

Dataflow Partitioning Algorithm. 13th International Workshop on Polyhedral Compilation

Techniques (IMPACT’23), 2023

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

Union of MARS = Flow-Out (complete!)

27/42

Some examples of MARS

Jacobi 1D, diamond tiling Jacobi 2D, “diamond” tiling

Jacobi 2D, skewed tiling

28/42

Applications of MARS

• Memory allocation for FPGA accelerators

• Exploit atomicity of the MARS

• Derive a data layout using MARS minimizing read transactions

29/42

Applications of MARS

• Memory allocation for FPGA accelerators

• Exploit atomicity of the MARS

• Derive a data layout using MARS minimizing read transactions

• Compression

• Along with data layout → increase the effective bandwidth (amount of useful

data transmitted over the bus) thanks to MARS’ irredundancy

29/42

Applications of MARS

• Memory allocation for FPGA accelerators

• Exploit atomicity of the MARS

• Derive a data layout using MARS minimizing read transactions

• Compression

• Along with data layout → increase the effective bandwidth (amount of useful

data transmitted over the bus) thanks to MARS’ irredundancy

• Fault tolerance

• Compute a checksum on each MARS. If error → the producer tile (known) is

to be re-executed.

29/42

i

j

Consumer

Recompute

Data Error!

Application of MARS: Contributions
● Use the MARS decomposition to exhibit contiguity

– Derive MARS from program, allocate data space for MARS

– Find a layout maximizing the contiguity opportunities

30/42

Application of MARS: Contributions
● Use the MARS decomposition to exhibit contiguity

– Derive MARS from program, allocate data space for MARS

– Find a layout maximizing the contiguity opportunities

● Exploit MARS atomicity with data compression

– Build a compression engine on FPGA for MARS data

30/42

Application of MARS: Contributions
● Use the MARS decomposition to exhibit contiguity

– Derive MARS from program, allocate data space for MARS

– Find a layout maximizing the contiguity opportunities

● Exploit MARS atomicity with data compression

– Build a compression engine on FPGA for MARS data

● Automate the process

– Integrate the compressed MARS into existing FPGA acceleration code

30/42

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

31/42

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

31/42

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

31/42

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

coalesced read

31/42

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

coalesced read

31/42

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Formulated as an LP optimization problem

Consumer

coalesced read

31/42

Exploiting Atomicity for Compression

32/42

● Compressing data creates atomic blocks

● MARS are already atomic → leverage this property

● Efficient compression = no redundancy

– e.g. dynamic compression [Ozturk 2009] : decompress one full tile

i

j

Consumer

compress decompress discard

usecompute

Compressed MARS FPGA Architecture

Combines MARS (random ↔ contiguous) + compression to save bandwidth

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

Block RAM

ROM

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

33/42

AXI

Validation on FPGA

34/42

Validation on PolyBench benchmarks on FPGA (ZCU104)

jacobi-1d, jacobi-2d, seidel-2d

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

AXI

Validation on FPGA

34/42

Validation on PolyBench benchmarks on FPGA (ZCU104)

jacobi-1d, jacobi-2d, seidel-2d

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

AXI

How fast is compressed MARS transfer compared to…
● A rectangular bounding box around the data?
● The original allocation for CPU program?
● MARS without compression?

Validation on FPGA

34/42

Validation on PolyBench benchmarks on FPGA (ZCU104)

jacobi-1d, jacobi-2d, seidel-2d

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

AXI

How large is the transfer machinery
● In terms of logic/state machines?
● In terms of extra storage?

How fast is compressed MARS transfer compared to…
● A rectangular bounding box around the data?
● The original allocation for CPU program?
● MARS without compression?

MARS Enables Higher Bandwidth

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

Bandwidth Utilization (2-D stencils, Medium Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

35/42

MARS Enables Higher Bandwidth

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

Bandwidth Utilization (2-D stencils, Medium Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

35/42

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

Effective Bandwidth (2-D stencils, Medium Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

MARS Enables Higher Bandwidth

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

Bandwidth Utilization (2-D stencils, Medium Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

35/42

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

Effective Bandwidth (2-D stencils, Medium Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

MARS → higher bandwidth utilization

Compressed MARS → higher effective bandwidth (faster!)

Compression Enables Higher Bandwidth

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Bandwidth Utilization (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

36/42

Compression Enables Higher Bandwidth

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Bandwidth Utilization (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

36/42

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Effective Bandwidth (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

Compression Enables Higher Bandwidth

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Bandwidth Utilization (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

36/42

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Effective Bandwidth (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

Compression increases effective bandwidth

even in 1-D cases

High bandwidth has a cost!

37/42

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0

5

10

15

20

25

30

35

Accelerator Area (LUT)

Original Allocation Bounding Box MARS (w/compression engine)

O
c
c
u

p
ie

d
L
U

T
C

o
u

n
t

O
c
c
u

p
ie

d
L
U

T
%

High bandwidth has a cost!

37/42

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0

5

10

15

20

25

30

35

Accelerator Area (LUT)

Original Allocation Bounding Box MARS (w/compression engine)

O
c
c
u

p
ie

d
L
U

T
C

o
u

n
t

O
c
c
u

p
ie

d
L
U

T
%

0

5

10

15

20

25

0

1

2

3

4

5

6

7

8

Accelerator Area (Block RAM)

Original Allocation Bounding Box MARS (w/compression engine)

O
c
c
u

p
ie

d
B

R
A

M
C

o
u

n
t

O
c
c
u

p
ie

d
B

R
A

M
%

High bandwidth has a cost!

37/42

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0

5

10

15

20

25

30

35

Accelerator Area (LUT)

Original Allocation Bounding Box MARS (w/compression engine)

O
c
c
u

p
ie

d
L
U

T
C

o
u

n
t

O
c
c
u

p
ie

d
L
U

T
%

0

5

10

15

20

25

0

1

2

3

4

5

6

7

8

Accelerator Area (Block RAM)

Original Allocation Bounding Box MARS (w/compression engine)

O
c
c
u

p
ie

d
B

R
A

M
C

o
u

n
t

O
c
c
u

p
ie

d
B

R
A

M
%

Metadata

MARS take-aways

Compression + Data Contiguity = High Effective Bandwidth

Open doors…

• Limited to a very specific class of programs (uniform dependences)

• How about a fine-grain layout inside MARS?

→ Would prevent on-chip port contention

• Add data persistence across tiles?

→ Would reduce the number of MARS (further bandwidth savings)

38/42

Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions

39/42

Study on affine dependences and MARS

i

j

i

MARS does not handle affine dependences, e.g. broadcasts

Broadcast dependence

40/42

Study on affine dependences and MARS

i

j

i

MARS does not handle affine dependences, e.g. broadcasts

Broadcast dependence

Dependences Consumers Enumerable Partition Invariant

Uniform (≥ 1) Yes Yes

Single Affine Yes Yes

Multiple

Uniformly Intersecting
Yes Yes

Multiple Affine

Same null space
Unknown Unknown

Multiple Affine

Multiple null spaces
No No

40/42

Study on affine dependences and MARS

i

j

i

MARS does not handle affine dependences, e.g. broadcasts

Broadcast dependence

Dependences Consumers Enumerable Partition Invariant

Uniform (≥ 1) Yes Yes

Single Affine Yes Yes

Multiple

Uniformly Intersecting
Yes Yes

Multiple Affine

Same null space
Unknown Unknown

Multiple Affine

Multiple null spaces
No No

40/42

Flagship application: Deep Neural Nets (ML)

Study on affine dependences and MARS

i

j

i

MARS does not handle affine dependences, e.g. broadcasts

Broadcast dependence

Dependences Consumers Enumerable Partition Invariant

Uniform (≥ 1) Yes Yes

Single Affine Yes Yes

Multiple

Uniformly Intersecting
Yes Yes

Multiple Affine

Same null space
Unknown Unknown

Multiple Affine

Multiple null spaces
No No

40/42

Flagship application: Deep Neural Nets (ML)

Ferry, C.; Derrien, S. & Rajopadhye, S. An Irredundant Decomposition of Data Flow with Affine

Dependences. 14th International Workshop on Polyhedral Compilation Techniques

(IMPACT’24), 2024

Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions

41/42

Conclusions
Improving FPGAs Memory Performance via Polyhedral Compilation Methods

42/42

i

j

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

AXI

Conclusions
Improving FPGAs Memory Performance via Polyhedral Compilation Methods

42/42

i

j

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

Persistence?

Affine Deps?

AXI

Conclusions
Improving FPGAs Memory Performance via Polyhedral Compilation Methods

42/42

i

j

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI

Persistence?

Affine Deps?

GPU / CPU Vector Units?

Heterogeneous memory?

AXI

Thank you

