Automatic Derivation of Memory Allocations for Polyhedral Programs

Corentin Ferry – February 19, 2024

Ph.D. Defense

Processor

Processeur

Where the programs run Là où s'exécutent les programmes

Memory *Mémoire*

Where the data is Là où sont les données

Where the programs run Là où s'exécutent les programmes

CPU vs Memory Performance

Prof. Sean Lee's Slide

https://www.sci.utah.edu/~mb/Teaching/Week3/mem-hierarchy.pdf

Multiple Memory Technologies

Multiple Memory Technologies

High bandwidth available, but programs still bandwidth-bound!

Outline

- Introduction and Motivation
- Background
 - Memory controllers
 - FPGAs and High-Level Synthesis
 - Polyhedral model and high-level transformations
- Proposed Solutions
- Conclusions

On the good usage of memory controllers

On the good usage of memory controllers

Burst Access Pattern (optimal)

On the good usage of memory controllers

Burst Access Pattern (optimal)

Burst = Access consecutive addresses in a row → requires contiguity

What is an FPGA ?

Field-Programmable Gate Array Chips that can implement **any logic circuit**

What is an FPGA ?

Field-Programmable Gate Array Chips that can implement **any logic circuit**

What is an FPGA ?

Field-Programmable Gate Array Chips that can implement **any logic circuit**

Université

∮ SIRISA

Université

∮ SIRISA

HLS → parallel architecture + burst memory interface

Université

∮ SIRISA

The polyhedral model

- Target: Computational kernels that admit a *polyhedral representation*
 - Iteration space + dependence function (e.g. from Array Dataflow Analysis [1])

Smith-Waterman kernel iteration space and dependences

[1] Feautrier, P. *Dataflow analysis of array and scalar references*. International Journal of Parallel Programming, Springer Science and Business Media LLC, 1991, 20, 23-53

The polyhedral model

- Target: Computational kernels that admit a *polyhedral representation*
 - Iteration space + dependence function (e.g. from Array Dataflow Analysis [1])

Smith-Waterman kernel iteration space and dependences

[1] Feautrier, P. *Dataflow analysis of array and scalar references*. International Journal of Parallel Programming, Springer Science and Business Media LLC, 1991, 20, 23-53

A Locality Optimization: Loop Tiling

- Break up the iteration space → **Improve Locality** Each tile's footprint fits in local memory
- Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space

A Locality Optimization: Loop Tiling

- Break up the iteration space → **Improve Locality** Each tile's footprint fits in local memory
- Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space

A Locality Optimization: Loop Tiling

- Break up the iteration space → **Improve Locality** Each tile's footprint fits in local memory
- Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space

Apply Loop Tiling for locality then look for spatial locality optimizations

• Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

• Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

• Cache-specific optimizations

Cache miss equations [7], conflict avoidance by padding [8], etc.

• Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

• Cache-specific optimizations

Cache miss equations [7], conflict avoidance by padding [8], etc.

• **Automated** in optimizing compilers (e.g. Polly [9])

[1] Zhou, X.; Giacalone, J.-P.; Garzarán, M. J.; Kuhn, R. H.; Ni, Y. & Padua, D. *Hierarchical overlapped tiling.* Proceedings of the Tenth International Symposium on Code Generation and Optimization, ACM, 2012.

[2] Bondhugula, U.; Bandishti, V. & Pananilath, I. *Diamond Tiling: Tiling Techniques to Maximize Parallelism for Stencil Computations*. IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers (IEEE), 2017, 28, 1285-1298ceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, 2021

[3] Rossetti, C. & Clauss, P. Algebraic Tiling. IMPACT 2023, 13th International Workshop on Polyhedral Compilation Techniques, Jan 2023, Toulouse, France, 2023

[4] Coleman, S. & McKinley, K. S. Tile Size Selection Using Cache Organization and Data Layout. SIGPLAN Not., Association for Computing Machinery, 1995, 30, 279–290

[5] Mehta, S.; Beeraka, G. & Yew, P.-C. *Tile Size Selection Revisited.* ACM Trans. Archit. Code Optim., Association for Computing Machinery, 2013, 10

[6] Bondhugula, U.; Hartono, A.; Ramanujam, J. & Sadayappan, P. A Practical Automatic Polyhedral Program Optimization System. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2008

[7] Ghosh, S.; Martonosi, M. & Malik, S. *Cache miss equations*. ACM Transactions on Programming Languages and Systems, Association for Computing Machinery (ACM), 1999, 21, 703-746

[8] Hong, C.; Bao, W.; Cohen, A.; Krishnamoorthy, S.; Pouchet, L.-N.; Rastello, F.; Ramanujam, J. & Sadayappan, P. *Effective Padding of Multidimensional Arrays to Avoid Cache Conflict Misses.* SIGPLAN Not., Association for Computing Machinery, 2016, 51, 129–144

[9] Grosser, T.; Groesslinger, A. & Lengauer, C. *Polly – Performing Polyhedral Optimizations On A Low-Level Intermediate Representation*. Parallel Processing Letters, World Scientific Pub Co Pte Lt, 2012, 22, 1250010

• Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.

• Cache-specific optimizations

Cache miss equations [7], conflict avoidance by padding [8], etc.

• Automated in optimizing compilers (e.g. Polly [9])

[1] Zho Genera

[2] Bor

Locality → well-studied, addressed issue This work = "Spatial" locality (contiguity)

Distributed Systems, Institute of Electrical and Electronics Engineers (IEEE), 2017, 28, 1285-1298ceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, 2021

[3] Rossetti, C. & Clauss, P. Algebraic Tiling. IMPACT 2023, 13th International Workshop on Polyhedral Compilation Techniques, Jan 2023, Toulouse, France, 2023

[4] Coleman, S. & McKinley, K. S. Tile Size Selection Using Cache Organization and Data Layout. SIGPLAN Not., Association for Computing Machinery, 1995, 30, 279–290

[5] Mehta, S.; Beeraka, G. & Yew, P.-C. *Tile Size Selection Revisited*. ACM Trans. Archit. Code Optim., Association for Computing Machinery, 2013, 10

[6] Bondhugula, U.; Hartono, A.; Ramanujam, J. & Sadayappan, P. A Practical Automatic Polyhedral Program Optimization System. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2008

[7] Ghosh, S.; Martonosi, M. & Malik, S. *Cache miss equations*. ACM Transactions on Programming Languages and Systems, Association for Computing Machinery (ACM), 1999, 21, 703-746

[8] Hong, C.; Bao, W.; Cohen, A.; Krishnamoorthy, S.; Pouchet, L.-N.; Rastello, F.; Ramanujam, J. & Sadayappan, P. *Effective Padding of Multidimensional Arrays to Avoid Cache Conflict Misses.* SIGPLAN Not., Association for Computing Machinery, 2016, 51, 129–144

[9] Grosser, T.; Groesslinger, A. & Lengauer, C. Polly – Performing Polyhedral Optimizations On A Low-Level Intermediate Representation. Parallel Processing Letters, World Scientific Pub Co Pte Lt, 2012, 22, 1250010

Polyhedral HLS Compiler Flow

- Optimizations on **Polyhedral Representation** (very high-level) and imperative code (high-level C/C++)
- Output : FPGA bitstream

• Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, **static determination at compile time**

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

• Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, **static determination at compile time**

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

• Memory Layout for Host-Accelerator Communications:

Ozturk et al., 2009 [5]: data tiling + compression → Our work = **finer-grain data breakdown** amenable to compression

• Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, **static determination at compile time**

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

• Memory Layout for Host-Accelerator Communications:

Ozturk et al., 2009 [5]: data tiling + compression → Our work = **finer-grain data breakdown** amenable to compression

• Allocation from Polyhedral Representation:

Yuki and Rajopadhye, 2013 [6]: reduce memory footprint with uniform dependences

→ Our work = objective is bandwidth utilization

[3] Dathathri, R.; Reddy, C.; Ramashekar, T. & Bondhugula, U. *Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory.* Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, IEEE, 2013

[4] Zhao, T.; Hall, M.; Johansen, H. & Williams, S. *Improving communication by optimizing on-node data movement with data layout* Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, 2021

[5] Ozturk, O.; Kandemir, M. & Irwin, M. Using Data Compression for Increasing Memory System Utilization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), 2009, 28, 901-914

[6] Yuki, T. & Rajopadhye, S. *Memory allocations for tiled uniform dependence programs* IMPACT 2013, 2013, 13

• Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning

→ Our work = one specific case, **static determination at compile time**

Zhao et al, 2021 [4]: partitioning + layout

→ Our work = « generalization » to uniform dependences

• Memory Layout for Host-Accelerator Communications:

Ozturk et al., 2009 [5]: data tiling + compression → Our work = **finer-grain data breakdown** amenable to compression

• Allocation from Polyhedral Representation:

Yuki and Rajopadhye, 2013 [6]: reduce memory footprint with uniform dependences

→ Our work = objective is bandwidth utilization

[3] Dathathri, R.; Reddy, C.; Ramashekar, T. & Bondhugula, U. *Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory.* Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques. IEEE, 2013

[4] Zha	
Sympo	
[5] Ozt	

No existing compile-time, systematic data allocation from polyhedral representation

Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), 2009, 28, 901-914

[6] Yuki, T. & Rajopadhye, S. *Memory allocations for tiled uniform dependence programs* IMPACT 2013, 2013, 13

_AN

Approaches in this dissertation

Systematically derive memory allocations from the program itself

• Goal: Lower transfer time, higher bandwidth utilization

Approaches in this dissertation

Systematically derive memory allocations from the program itself

- Goal: Lower transfer time, higher bandwidth utilization
- Methods:
 - Use loop tiling for **locality**
 - Allocate only the necessary data into global memory = **low redundancy**
 - Access the data **contiguously**

Université

Approaches in this dissertation

Systematically derive memory allocations from the program itself

- Goal: Lower transfer time, higher bandwidth utilization
- Methods:
 - Use loop tiling for **locality**
 - Allocate only the necessary data into global memory = **low redundancy**
 - Access the data **contiguously**
- Solutions:

Université

∮ SIRISA

- A contiguous allocation for **rectangular tiles**, uniform dependences
- A contiguous, irredundant allocation for **any tiling**, uniform dependences
- A study on the case of **broadcast dependences**

15/42

Outline

- Introduction and Motivation
- Background
- Proposed Solutions
 - Contiguous Allocation for Rectangular Tiles
 - Partitioning the Data Flow of Programs with Uniform Dependences
 - Contiguous, Compressed Memory Allocation for Uniform Dependence Programs
 - Partitioning the Data Flow of Programs with Affine Dependences
- Conclusions

Université

Computing, Networking, Storage and Analysis, ACM, 2013

COLORADO STATE UNIVERSITY

17/42

Flow-Out Iterations: Data Needed To Execute Other Tiles Most efficient allocation = allocation for flow-in & flow-out!

Bondh

Computing, Networking, Storage and Analysis, ACM, 2013

hance

18/42

- Create a memory allocation for intermediate results
 - Compute data sets produced by each tile to be made contiguous
 - Allocate memory for each set

- Create a memory allocation for intermediate results
 - Compute data sets produced by each tile to be made contiguous
 - Allocate memory for each set
- Increase data contiguity
 - Apply data tiling
 - Tweak the memory layout to get contiguity across data tiles

- Create a memory allocation for intermediate results
 - Compute data sets produced by each tile to be made contiguous
 - Allocate memory for each set
- Increase data contiguity
 - Apply data tiling
 - Tweak the memory layout to get contiguity across data tiles
- Mechanize the process
 - Create a compiler pass automatically deriving I/O code
 - Integrate the I/O code into an FPGA data-flow architecture

Université

- Create a memory allocation for intermediate results
 - Compute data sets produced by each tile to be made contiguous
 - Allocate memory for each set
- Increase data contiguity
 - Apply data tiling
 - Tweak the memory layout to get contiguity across data tiles
- Mechanize the process
 - Create a compiler pass automatically deriving I/O code
 - Integrate the I/O code into an FPGA data-flow architecture

Ferry, C.; Yuki, T.; Derrien, S. & Rajopadhye, S. *Increasing FPGA Accelerators Memory Bandwidth with a Burst-Friendly Memory Layout.* **IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems**, Institute of Electrical and Electronics Engineers (IEEE), 2022, 1-1

Canonical Facet Allocation (CFA)

- Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]
 - Observation: flow-in data is made mostly of adjacent faces
 - Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile
- Our idea : tweak the data layout

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs," 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. "Implementation Trade-Offs for FPGA Accelerators." PhD Thesis, Université de Rennes 1, 2017

Canonical Facet Allocation (CFA)

- Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]
 - Observation: flow-in data is made mostly of adjacent faces
 - Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile
- Our idea : tweak the data layout

Contiguity inside a face and across neighboring faces

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs," 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. "Implementation Trade-Offs for FPGA Accelerators." PhD Thesis, Université de Rennes 1, 2017

Canonical Facet Allocation (CFA)

- Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]
 - Observation: flow-in data is made mostly of adjacent faces
 - Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile
- Our idea : tweak the data layout

Contiguity inside a face and across neighboring faces

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs," 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. "Implementation Trade-Offs for FPGA Accelerators." PhD Thesis, Université de Rennes 1, 2017

Proof-of-Concept CFA Compiler Pass

COLORADO STATE UNIVERSITY

Université

∮ SIRISA

Validation on FPGA

Does CFA yield a higher bandwidth utilization ?

- Protocol:
 - Execute I/O on FPGA
 - No execution engine
- CFA vs. 3 allocations:
 - Bounding box
 - Original ("UOV-like")
 - Data Tiling

Université

∮ SIRISA

Platform : Xilinx ZC706
 Xilinx xc7z045ffg900-2 FPGA
 Frequency 100 MHz
 1 access port, full-duplex 64-bit AXI

Burst Access (contigous)

Scalar Access (random)

CFA brings contiguity & low redundancy → high *effective* bandwidth

∮ SIRISA

Outline

- Introduction and Motivation
- Background
- Proposed Solutions
 - Contiguous Allocation for Rectangular Tiles
 - Partitioning the Data Flow of Programs with Uniform Dependences
 - Contiguous, Compressed Memory Allocation for Uniform Dependence Programs
 - Partitioning the Data Flow of Programs with Affine Dependences
- Conclusions

Université

Inter-tile communications : flow-in/out

- Iterations consumed in another tile = **Flow-out**
- Bondhugula (2013) [2] : communicated sets = *flow-in / flow-out* sets
- Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

Inter-tile communications : flow-in/out

- Iterations consumed in another tile = **Flow-out**
- Bondhugula (2013) [2] : communicated sets = *flow-in / flow-out* sets
- Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

Inter-tile communications : flow-in/out

- Iterations consumed in another tile = **Flow-out**
- Bondhugula (2013) [2] : communicated sets = *flow-in / flow-out* sets
- Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

Our Idea: Split the flow-out based on consumption

Maximal Atomic irRedundant Sets (MARS)

- Partition the flow-in and flow-out of iteration tiles
 - MARS = result of the partition
- Provide an **algorithm** and mathematical proofs for the partitioning

Ferry, C.; Derrien, S. & Rajopadhye, S. *Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm.* **13th International Workshop on Polyhedral Compilation Techniques** (IMPACT'23), 2023
Maximal Atomic irRedundant Sets (MARS)

- Partition the flow-in and flow-out of iteration tiles
 - MARS = result of the partition
- Provide an **algorithm** and mathematical proofs for the partitioning

Ferry, C.; Derrien, S. & Rajopadhye, S. *Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm.* **13th International Workshop on Polyhedral Compilation Techniques** (IMPACT'23), 2023

Maximal Atomic irRedundant Sets (MARS)

- Partition the flow-in and flow-out of iteration tiles
 - MARS = result of the partition
- Provide an **algorithm** and mathematical proofs for the partitioning

Ferry, C.; Derrien, S. & Rajopadhye, S. *Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm.* **13th International Workshop on Polyhedral Compilation Techniques** (IMPACT'23), 2023

Maximal Atomic irRedundant Sets (MARS)

- Partition the flow-in and flow-out of iteration tiles
 - MARS = result of the partition
- Provide an **algorithm** and mathematical proofs for the partitioning

Maximality: adding any element violates Atomicity or Integrity

Ferry, C.; Derrien, S. & Rajopadhye, S. *Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm.* **13th International Workshop on Polyhedral Compilation Techniques** (IMPACT'23), 2023

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

Iterations consumed by tuple less Iterations consumed by other tiles

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

Iterations consumed by tuple less Iterations consumed by other tiles

- Sought: Iterations consumed **exclusively** by specific consumer tiles
- Constructed by iterating over **tuples of consumers**

Iterations consumed by tuple less Iterations consumed by other tiles

Some examples of MARS

Jacobi 1D, diamond tiling

Université

∮ ∎ IRISA

Jacobi 2D, "diamond" tiling

Applications of MARS

• Memory allocation for FPGA accelerators

- Exploit atomicity of the MARS
- Derive a data layout using MARS minimizing read transactions

Applications of MARS

• Memory allocation for FPGA accelerators

- Exploit atomicity of the MARS
- Derive a data layout using MARS minimizing read transactions

Compression

 Along with data layout → increase the effective bandwidth (amount of useful data transmitted over the bus) thanks to MARS' irredundancy

Applications of MARS

Fault tolerance

 Compute a checksum on each MARS. If error → the producer tile (known) is to be re-executed.

Application of MARS: Contributions

- Use the MARS decomposition to exhibit contiguity
 - Derive MARS from program, allocate data space for MARS
 - Find a layout maximizing the contiguity opportunities

Application of MARS: Contributions

- Use the MARS decomposition to exhibit contiguity
 - Derive MARS from program, allocate data space for MARS
 - Find a layout maximizing the contiguity opportunities
- Exploit MARS atomicity with data compression
 - Build a compression engine on FPGA for MARS data

Application of MARS: Contributions

- Use the MARS decomposition to exhibit contiguity
 - Derive MARS from program, allocate data space for MARS
 - Find a layout maximizing the contiguity opportunities
- Exploit MARS atomicity with data compression
 - Build a compression engine on FPGA for MARS data
- Automate the process

Université

- Integrate the compressed MARS into existing FPGA acceleration code

- Find MARS layout in memory **minimizing read time**
- Remember: Memory is Linear (1 MARS between at most 2 MARSes)

- Find MARS layout in memory **minimizing read time**
- Remember: Memory is Linear (1 MARS between at most 2 MARSes)

- Find MARS layout in memory **minimizing read time**
- Remember: Memory is Linear (1 MARS between at most 2 MARSes)

- Find MARS layout in memory **minimizing read time**
- Remember: Memory is Linear (1 MARS between at most 2 MARSes)

- Find MARS layout in memory **minimizing read time**
- Remember: Memory is Linear (1 MARS between at most 2 MARSes)

Formulated as an LP optimization problem

Université

∮ **SIRISA**

Exploiting Atomicity for Compression

- Compressing data creates atomic blocks
- MARS are already atomic \rightarrow leverage this property
- Efficient compression = **no redundancy**
 - e.g. dynamic compression [Ozturk 2009] : decompress one full tile

Compressed MARS FPGA Architecture

Combines MARS (random ↔ contiguous) + compression to save bandwidth

Validation on FPGA

Validation on PolyBench benchmarks on FPGA (ZCU104)

Université

∮ SIRISA

Validation on FPGA

Validation on PolyBench benchmarks on FPGA (ZCU104)

jacobi-1d, jacobi-2d, seidel-2d

How fast is compressed MARS transfer compared to...

- A rectangular bounding box around the data?
- The original allocation for CPU program?
- MARS without compression?

Université

Validation on FPGA

Validation on PolyBench benchmarks on FPGA (ZCU104)

How fast is compressed MARS transfer compared to...

- A rectangular bounding box around the data?
- The original allocation for CPU program?
- MARS without compression?

Université

How large is the transfer machinery

- In terms of logic/state machines?
- In terms of extra storage?

MARS Enables Higher Bandwidth

MARS Enables Higher Bandwidth

∮ ∎IRISA

MARS Enables Higher Bandwidth

Compression Enables Higher Bandwidth

∮ SIRISA

Compression Enables Higher Bandwidth

∮ SIRISA

Compression Enables Higher Bandwidth

COLORADO STATE UNIVERSITY

36/42
High bandwidth has a cost!

Université

∮ SIRISA

High bandwidth has a cost!

∮ SIRISA

High bandwidth has a cost!

Université

∮ SIRISA

MARS take-aways

Compression + Data Contiguity = High Effective Bandwidth

Open doors...

- Limited to a very **specific class of programs** (uniform dependences)
- How about a **fine-grain layout** inside MARS?
 - \rightarrow Would prevent on-chip port contention
- Add **data persistence** across tiles?
 - \rightarrow Would reduce the number of MARS (further bandwidth savings)

Outline

- Introduction and Motivation
- Background
- Proposed Solutions
 - Contiguous Allocation for Rectangular Tiles
 - Partitioning the Data Flow of Programs with Uniform Dependences
 - Contiguous, Compressed Memory Allocation for Uniform Dependence Programs
 - Partitioning the Data Flow of Programs with Affine Dependences
- Conclusions

Broadcast dependence

MARS does not handle affine dependences, e.g. broadcasts

Dependences	Consumers Enumerable	Partition Invariant	
Uniform (≥ 1)	Yes	Yes	
Single Affine	Yes	Yes	
Multiple Uniformly Intersecting	Yes	Yes	
Multiple Affine Same null space	Unknown	Unknown	
Multiple Affine Multiple null spaces	No	No	
i i			
		i	

Broadcast dependence

MARS does not handle affine dependences, e.g. broadcasts

Dependences	Consumers Enumerable	Partition Invariant
Uniform (≥ 1)	Yes	Yes
Single Affine	Yes	Yes
Multiple Uniformly Intersecting	Yes	Yes
Multiple Affine Same null space	Unknown	Unknown
Multiple Affine Multiple null spaces	No	No

Flagship application: Deep Neural Nets (ML)

Broadcast dependence

MARS does not handle affine dependences, e.g. broadcasts

Dependences	Consumers Enumerable	Partition Invariant
Uniform (≥ 1)	Yes	Yes
Single Affine	Yes	Yes
Multiple Uniformly Intersecting	Yes	Yes
Multiple Affine Same null space	Unknown	Unknown
Multiple Affine Multiple null spaces	No	No

Flagship application: Deep Neural Nets (ML)

Ferry, C.; Derrien, S. & Rajopadhye, S. *An Irredundant Decomposition of Data Flow with Affine Dependences.* **14th International Workshop on Polyhedral Compilation Techniques** (IMPACT'24), 2024

Outline

- Introduction and Motivation
- Background
- Proposed Solutions
 - Contiguous Allocation for Rectangular Tiles
 - Partitioning the Data Flow of Programs with Uniform Dependences
 - Contiguous, Compressed Memory Allocation for Uniform Dependence Programs
 - Partitioning the Data Flow of Programs with Affine Dependences
- Conclusions

Conclusions

Improving FPGAs Memory Performance via Polyhedral Compilation Methods

Conclusions

Improving FPGAs Memory Performance via Polyhedral Compilation Methods

Conclusions

Improving FPGAs Memory Performance via Polyhedral Compilation Methods

∮ ∎IRISA

