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Là où s’exécutent les programmes

Where the data is
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Data exchange is… way too slow!

Les données circulent trop lentement !



  

https://www.sci.utah.edu/~mb/Teaching/Week3/mem-hierarchy.pdf
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Multiple Memory Technologies
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Outline

● Introduction and Motivation

● Background

– Memory controllers

– FPGAs and High-Level Synthesis

– Polyhedral model and high-level transformations

● Proposed Solutions

● Conclusions
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On the good usage of memory controllers

Burst = Access consecutive addresses in a row → requires contiguity
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What is an FPGA ?

Field-Programmable Gate Array

Chips that can implement any logic circuit
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High-Level Synthesis of FPGA Archs

for(int i = 1; i <= N-1; i++) {

  A[i] = (B[i-1] + B[i] + B[i+1]) / 3;

}
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High-Level Synthesis of FPGA Archs

for(int i = 1; i <= N-1; i++) {

  A[i] = (B[i-1] + B[i] + B[i+1]) / 3;

}

HLS → parallel architecture + burst memory interface 
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The polyhedral model

• Target: Computational kernels that admit a polyhedral representation

• Iteration space + dependence function (e.g. from Array Dataflow Analysis [1])

[1] Feautrier, P. Dataflow analysis of array and scalar references. International Journal of Parallel Programming, Springer Science and Business Media 

LLC, 1991, 20, 23-53

for(int i = 0; i < N; ++i) {

  for(int j = 0; j < M; ++j) {

    C[i][j] = max(C[i][j-1], C[i-1][j], C[i-1][j-1] + W);

  }

}

Smith-Waterman kernel iteration space and dependences

i

j

analysis
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Dependence

all     must be done before    



  

A Locality Optimization: Loop Tiling

• Break up the iteration space  → Improve Locality

Each tile’s footprint fits in local memory

• Cut must be legal with respect to dependences

No back-and-forth dependences between tiles (atomicity)

Tiling of Smith-Waterman kernel iteration space
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i

j

Apply Loop Tiling for locality then look for spatial locality optimizations

Locality → all recently computed values are in cache



  

Many Polyhedral Locality Optimizations
● Loop tiling

Tile shapes : overlapped [1], diamond [2], algebraic [3], etc.

Tile size : automatic selection [4, 5], optimization [6], etc.
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Locality → well-studied, addressed issue

This work = “Spatial” locality (contiguity)
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Memory access pattern optimizations
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● Decomposition of Inter-Tile Communications:

Datharthri et al., 2013 [3]: Flow-In/Flow-Out partitioning 

→ Our work = one specific case, static determination at compile time

Zhao et al, 2021 [4]: partitioning + layout 

→ Our work = « generalization » to uniform dependences
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Ozturk et al., 2009 [5]: data tiling + compression 

→ Our work = finer-grain data breakdown amenable to compression

● Allocation from Polyhedral Representation:

Yuki and Rajopadhye, 2013 [6]: reduce memory footprint with uniform 

dependences 

→ Our work = objective is bandwidth utilization
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from polyhedral representation
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Systematically derive memory allocations from the program itself

• Goal: Lower transfer time, higher bandwidth utilization

• Methods:

• Use loop tiling for locality

• Allocate only the necessary data into global memory = low redundancy

• Access the data contiguously

• Solutions:

• A contiguous allocation for rectangular tiles, uniform dependences

• A contiguous, irredundant allocation for any tiling, uniform dependences

• A study on the case of broadcast dependences
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Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence 

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions
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Flow-In Iterations

Tales of Tiles: the Flow-In Iterations...

Flow-In Iterations: Data Needed to Execute One Tile

17/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

Flow-Out Iterations

18/42



  

Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High Performance 

Computing, Networking, Storage and Analysis, ACM, 2013

… and the Flow-Out Iterations

Flow-Out Iterations: Data Needed To Execute Other Tiles

Most efficient allocation = allocation for flow-in & flow-out!

Flow-Out Iterations

18/42
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Canonical Facet Allocation (CFA)
● Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]

– Observation: flow-in data is made mostly of adjacent faces

– Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile

● Our idea : tweak the data layout

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs," 

2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.

[Deest PhD] Deest, G. “Implementation Trade-Offs for FPGA Accelerators.” PhD Thesis, Université de Rennes 1, 2017

Contiguity inside face

Contiguity across faces

20/42



Canonical Facet Allocation (CFA)
● Extension of Deest et al. [Deest FPL 2017, Deest PhD 2017]

– Observation: flow-in data is made mostly of adjacent faces

– Idea : Allocate contiguous memory for the flow-in/flow-out faces of each tile

● Our idea : tweak the data layout

[Deest FPL 2017] Deest, G.; Yuki, T.; Rajopadhye, S. & and Derrien, S. "One size does not fit all: Implementation trade-offs for iterative stencil computations on FPGAs," 

2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017, pp. 1-8, doi: 10.23919/FPL.2017.8056781.
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CFA pass

Proof-of-Concept CFA Compiler Pass

Inside the GeCoS compiler framework

Compute

Facet

Depth

Compute

Flow-In

Flow-In

ISL Sets

Flow-Out

ISL Sets

Write 

Statements

+ Domains
Tiled

SCoP

Optimized

Tiled

SCoP
Select

Facets

(Contiguity)

Read 

Statements

+ Domains

Add Facet

Symbols
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Input C/C++

Analysis

Code Gen.

C/C++ for HLS



Validation on FPGA

Read

engine

Write

engine

DRAM

Local

Memory

(BRAM)

Pass

through

Burst Access (contigous)

FPGA

AXI 

HP

AXI 

HP

Scalar Access (random)

● Protocol:

– Execute I/O on FPGA

– No execution engine

● CFA vs. 3 allocations:

– Bounding box

– Original (“UOV-like”)

– Data Tiling

● Platform : Xilinx ZC706

Xilinx xc7z045ffg900-2 FPGA

Frequency 100 MHz

1 access port, full-duplex 64-bit AXI
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Does CFA yield a higher bandwidth utilization ?
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CFA → Higher Bandwidth Utilization
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CFA brings contiguity & low redundancy → high effective bandwidth



  

Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence 

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions
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Inter-tile communications : flow-in/out

• Iterations consumed in another tile = Flow-out 

• Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

• Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

[2] Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High 

Performance Computing, Networking, Storage and Analysis, ACM, 2013

i

j

25/42



  

Inter-tile communications : flow-in/out

• Iterations consumed in another tile = Flow-out 

• Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

• Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel

[2] Bondhugula, U. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. Proceedings of the International Conference on High 

Performance Computing, Networking, Storage and Analysis, ACM, 2013

i

j

25/42



  

Inter-tile communications : flow-in/out

• Iterations consumed in another tile = Flow-out 

• Bondhugula (2013) [2] : communicated sets = flow-in / flow-out sets

• Only a part of flow-out is needed by every consumer tile

Flow-out set of a tile of iterations with a Smith-Waterman kernel
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Performance Computing, Networking, Storage and Analysis, ACM, 2013
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Our Idea: Split the flow-out based on consumption
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Maximal Atomic irRedundant Sets (MARS)
● Partition the flow-in and flow-out of iteration tiles

– MARS = result of the partition

● Provide an algorithm and mathematical proofs for the partitioning

i

j
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Ferry, C.; Derrien, S. & Rajopadhye, S. Maximal Atomic irRedundant Sets: a Usage-based 

Dataflow Partitioning Algorithm. 13th International Workshop on Polyhedral Compilation 

Techniques (IMPACT’23), 2023
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Irredundancy: 1 iteration  1 set∈
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– MARS = result of the partition

● Provide an algorithm and mathematical proofs for the partitioning
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Atomicity: consume one, consume all

Irredundancy: 1 iteration  1 set∈

Maximality: adding any element violates Atomicity or Integrity

Ferry, C.; Derrien, S. & Rajopadhye, S. Maximal Atomic irRedundant Sets: a Usage-based 

Dataflow Partitioning Algorithm. 13th International Workshop on Polyhedral Compilation 

Techniques (IMPACT’23), 2023
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How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

27/42



  

i

j

How to construct the MARS?

● Sought: Iterations consumed exclusively by specific consumer tiles

● Constructed by iterating over tuples of consumers

Iterations consumed by tuple less Iterations consumed by other tiles

Union of MARS = Flow-Out (complete!)

27/42



  

Some examples of MARS

Jacobi 1D, diamond tiling Jacobi 2D, “diamond” tiling

Jacobi 2D, skewed tiling

28/42



  

Applications of MARS

• Memory allocation for FPGA accelerators

• Exploit atomicity of the MARS

• Derive a data layout using MARS minimizing read transactions
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Applications of MARS

• Memory allocation for FPGA accelerators

• Exploit atomicity of the MARS

• Derive a data layout using MARS minimizing read transactions

• Compression

• Along with data layout → increase the effective bandwidth (amount of useful 

data transmitted over the bus) thanks to MARS’ irredundancy

• Fault tolerance

• Compute a checksum on each MARS. If error → the producer tile (known) is 

to be re-executed.

29/42
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Consumer

Recompute

Data Error!



  

Application of MARS: Contributions
● Use the MARS decomposition to exhibit contiguity

– Derive MARS from program, allocate data space for MARS

– Find a layout maximizing the contiguity opportunities
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Application of MARS: Contributions
● Use the MARS decomposition to exhibit contiguity

– Derive MARS from program, allocate data space for MARS

– Find a layout maximizing the contiguity opportunities

● Exploit MARS atomicity with data compression

– Build a compression engine on FPGA for MARS data

● Automate the process

– Integrate the compressed MARS into existing FPGA acceleration code
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Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

31/42



  

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

31/42



  

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

31/42



  

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

coalesced read

31/42



  

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Consumer

coalesced read

31/42



  

Optimizing Memory Layout of MARS

• Find MARS layout in memory minimizing read time

• Remember: Memory is Linear (1 MARS between at most 2 MARSes)

i

j

@

Formulated as an LP optimization problem

Consumer

coalesced read
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Exploiting Atomicity for Compression

32/42

● Compressing data creates atomic blocks

● MARS are already atomic → leverage this property

● Efficient compression = no redundancy

– e.g. dynamic compression [Ozturk 2009] : decompress one full tile

i

j

Consumer

compress decompress discard

usecompute



  

Compressed MARS FPGA Architecture

Combines MARS (random ↔ contiguous) + compression to save bandwidth

Compression

Metadata

Decompression

engine

Compression

engine

Global

Memory

MARS 

Structure

Information

MARS

Dispatch

MARS

Collect

Local

Memory
Compute

Block RAM

ROM

FPGA

Write

Read Read

Read

FIFO

FIFO Random

Random

AXI
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Validation on FPGA

34/42

Validation on PolyBench benchmarks on FPGA (ZCU104)

jacobi-1d, jacobi-2d, seidel-2d
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Validation on PolyBench benchmarks on FPGA (ZCU104)

jacobi-1d, jacobi-2d, seidel-2d
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How large is the transfer machinery
● In terms of logic/state machines?
● In terms of extra storage?

How fast is compressed MARS transfer compared to…
● A rectangular bounding box around the data?
● The original allocation for CPU program?
● MARS without compression?



  

MARS Enables Higher Bandwidth
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MARS → higher bandwidth utilization

Compressed MARS → higher effective bandwidth (faster!)



  

Compression Enables Higher Bandwidth

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Bandwidth Utilization (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

36/42



  

Compression Enables Higher Bandwidth

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Bandwidth Utilization (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

36/42

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Effective Bandwidth (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)



  

Compression Enables Higher Bandwidth

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Bandwidth Utilization (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

36/42

200x200-18bit 200x200-24bit 200x200-28bit 200x200-double 200x200-float

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

Effective Bandwidth (Jacobi 1D, Extra-Large Data Set)

Original Allocation Bounding Box MARS (non-compressed) MARS (compressed)

Tile Size & Data type

B
a
n

d
w

id
th

(M
B

/s
)

Compression increases effective bandwidth

even in 1-D cases



  

High bandwidth has a cost!

37/42
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MARS take-aways

Compression + Data Contiguity = High Effective Bandwidth

Open doors…

• Limited to a very specific class of programs (uniform dependences)

• How about a fine-grain layout inside MARS?

→ Would prevent on-chip port contention

• Add data persistence across tiles?

→ Would reduce the number of MARS (further bandwidth savings)
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Outline

● Introduction and Motivation

● Background

● Proposed Solutions

– Contiguous Allocation for Rectangular Tiles

– Partitioning the Data Flow of Programs with Uniform Dependences

– Contiguous, Compressed Memory Allocation for Uniform Dependence 

Programs

– Partitioning the Data Flow of Programs with Affine Dependences

● Conclusions
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Study on affine dependences and MARS
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MARS does not handle affine dependences, e.g. broadcasts

Broadcast dependence
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Same null space
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Multiple null spaces
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Flagship application: Deep Neural Nets (ML)

Ferry, C.; Derrien, S. & Rajopadhye, S. An Irredundant Decomposition of Data Flow with Affine 

Dependences. 14th International Workshop on Polyhedral Compilation Techniques 

(IMPACT’24), 2024
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Conclusions
Improving FPGAs Memory Performance via Polyhedral Compilation Methods
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Thank you


