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Chapter 1

RÉSUMÉ EN FRANÇAIS

1.1 Introduction

Dans le domaine du calcul haute performance comme dans celui de l’informatique
embarquée, on observe une demande croissante de performance de calcul combinée à une
demande de réduction de la consommation énergétique des mêmes systèmes. Pour par-
venir à ces fins, il est nécessaire d’utiliser des accélérateurs matériels et des architectures
spécifiques.

L’accent mis sur le parallélisme au cours des années 2010 est à l’origine d’une impor-
tante proportion des gains en performance observés durant cette décennie. Celle-ci fut
le résultat à la fois d’une meilleure finesse de gravure des puces, qui permit de mettre
davantage de ressources de calcul à disposition des utilisateurs, et du développement de
compilateurs auto-parallélisants, qui en permirent l’exploitation.

L’augmentation de la puissance de calcul se traduit par une pression accrue sur les
systèmes mémoires qui, incapables d’y satisfaire, ralentissent alors les calculs. Ils sont
aussi à l’origine d’une fraction importante de la consommation énergétique en raison
des transferts inter-puces qu’ils effectuent. Pour faire face à ces deux défis, de nouvelles
architectures mémoire sont en développement : certaines, comme les mémoires LPDDR,
visent une basse consommation; d’autres au contraire cherchent à maximiser le débit en
entrée et sortie comme les architectures HBM.

L’émergence de nouvelles architectures mémoire permet d’adapter le choix du sous-
système mémoire au système développé. Ce seul choix ne suffit pas à garantir un débit
effectif ni une consommation optimales. Afin d’exploiter au mieux l’architecture choisie,
il est nécessaire d’optimiser le programme ou l’architecture de calcul afin d’optimiser son
utilisation de la mémoire.

On peut regrouper les optimisations existantes en deux catégories : les optimisations de
localité, qui visent à réduire la quantité d’entrée/sortie mémoire en exploitant les données
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Résumé en français

présentes dans les caches et mémoires locales, et les optimisations d’accès, qui visent à
réduire le temps de transfert total et ainsi obtenir le débit le plus élevé possible.

Dans cette thèse de doctorat, on s’intéresse particulièrement aux optimisations d’accès.
Contrairement aux optimisations de localité, dont beaucoup sont aujourd’hui automa-
tisées, les optimisations d’accès sont peu nombreuses, et demandent des modifications
profondes dans la structure des données utilisées par le programme. De telles modifica-
tions peuvent permettre d’exhiber des motifs d’accès à la mémoire plus efficaces, car plus
adaptés à la topologie des mémoires et au fonctionnement des contrôleurs. Notamment,
les accès contigus, ou burst, sont les plus efficaces avec les contrôleurs DDR, mais aussi
les plus difficiles à faire apparaître.

On développe dans cette thèse des méthodes d’analyse de programme permettant
de connaître les besoins précis en données de chaque partie accélérée du programme, et
de transformer la disposition des données ainsi que les motifs d’accès de l’accélérateur
pour faire apparaître des accès contigus. Pour effectuer de telles modifications, rendant
potentiellement inintelligibles les données à l’utilisateur, il est nécessaire de s’assurer de
la correction des résultats fournis par le programme; cette assurance n’est possible que
moyennant des hypothèses sur le comportement du programme, qui sont vérifiées à la com-
pilation. Afin de permettre de transformer l’éventail le plus large possible de programmes,
on cherche dans cette thèse quelles sont les hypothèses les plus faibles permettant de
garantir la correction des transformations effectuées.

On propose ainsi dans cette thèse les contributions qui suivent :
— Une allocation de données contigue pour programmes utilisant un pavage polyé-

drique rectangulaire permettant aux accès contigus de traverser les frontières des
tuiles,

— Une analyse à grain fin du flot de données du programme ainsi qu’un découpage
de celui-ci en blocs de données pouvant être rendus contigus,

— Une transformation de programme utilisant l’analyse précédente pour compresser
à la volée les données tout en assurant un volume d’entrée/sortie minimal,

— Une étude théorique sur l’extension des transformations proposées au cas où les
dépendances du programme sont affines.

14



Résumé en français

1.2 Allocation de données contigue pour pavage rect-
angulaire

Dans le chapitre 4, on propose une allocation de données spécifique aux accélérateurs
FPGA visant à maximiser l’exploitation de la contiguité tout en contrôlant le volume
d’accès dits redondants, c’est-à-dire le volume de données échangées bien que non utilisées
afin de préserver la contiguité.

Lorsque le programme admet une représentation polyédrique, il peut être possible de
lui appliquer un pavage (découpage de l’espace des itérations en tuiles de forme similaire),
afin d’augmenter la localité des accès. Des données issues de l’exécution de chaque tuile
sont nécessaires pour exécuter d’autres tuiles voisines; en outre, il est suffisant de n’allouer
de mémoire que pour certains résultats intermédiaires. Lorsque les dépendances entre les
calculs du programme sont dites uniformes, les données à allouer sont contenues dans les
faces des tuiles voisines, dans une enveloppe rectangulaire de taille bornée et déterminable
à la compilation. En choisissant de découper cette enveloppe en sous-enveloppes rectan-
gulaires par projection, on obtient des ensembles de données qu’il est possible d’allouer
en mémoire de manière contigue.

La connaissance du flot de données permet de connaître chacun des blocs à rechercher;
on exploite alors le voisinage de ces blocs en mémoire, s’il existe, pour regrouper ensemble
les accès aux différents blocs et obtenir les transactions les plus longues possibles. Ces
deux niveaux de contiguité permettent d’obtenir une augmentation de la bande passante
utilisée; les expériences qui ont été menées pour valider cette approche montrent qu’il est
ainsi possible d’utiliser l’intégralité de la bande passante vers la mémoire de l’accélérateur
FPGA.

1.3 Analyse et découpage du flot de données

Dans le chapitre 5, on s’intéresse au comportement mémoire des programmes pavés
lorsque le pavage est composé d’hyperplans quelconques. On effectue pour cela une analyse
plus précise du comportement des programmes admettant une représentation polyédrique.
Chaque tuile a besoin de résultats intermédiaires calculés par d’autres tuiles voisines.
Lorsque les dépendances entre les calculs sont uniformes, toutes les tuiles exhibent une
empreinte d’accès similaire sur leurs voisines. On propose alors d’exploiter cette régularité
et de découper les données transmises en groupes dotés de trois propriétés :
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— Atomicité : La consommation d’un élément d’un groupe implique la consommation
de l’ensemble du groupe;

— Unicité de l’origine (irredondance) : aucun élément ne peut faire partie de plusieurs
groupes à la fois, et chaque groupe est originaire d’une unique tuile.

— Maximalité : Si deux éléments ont exactement les mêmes tuiles consommatrices,
alors ils appartiennent au même groupe.

Ces trois propriétés caractérisent, et permettent de construire, les MARS (Maximal
Atomic irRedundant Sets) qui peuvent être utilisés pour, outre la construction d’une
allocation de mémoire, la détection et la correction des erreurs.

1.4 Allocation de données partitionnée et compres-
sion à la volée

Dans le chapitre 6, on étudie une application de l’analyse précédente afin de construire
une allocation de mémoire qui permette d’avoir l’utilisation la plus efficace du bus mémoire
tout en y faisant passer le volume de données le plus petit possible. Il est ainsi nécessaire
d’avoir recours à la fois à la contiguité et à la compression des données.

Les propriétés des MARS permettent d’exhiber des blocs contigus, candidats à la
compression en raison de leur propriété d’atomicité; afin de maximiser la contiguité, il
est nécessaire de l’étendre à travers les blocs MARS ainsi créés. On formule un problème
d’optimisation pour disposer en mémoire les MARS en cherchant à minimiser le nombre
d’accès burst effectués. On propose également de compresser les données des MARS, et
d’empaqueter les blocs compressés pour gagner à la fois en bande passante et en données.
Cela permet de travailler avec des données dont le type et la largeur sont arbitraires, ce
qui est courant sur FPGA, sans perte de bande passante.

On implémente un générateur de code permettant d’automatiser la création d’unités
mémoires spécifiques, exploitant les MARS et leur compression, pour des accélérateurs
FPGA.

1.5 Extension aux dépendances affines

Dans le chapitre 7, on s’intéresse aux limites des méthodes proposées aux deux chapitres
précédents. Ceux-ci ne peuvent considérer que les dépendances entre les calculs lorsque
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celles-ci sont uniformes. Sont exclus les accès à la mémoire issus de dépendances non-
uniformes, qui constituent pourtant l’essentiel des accès de certains programmes.

Le modèle polyédrique permet de représenter des dépendances affines, dont celles uni-
formes sont un cas particulier. Dans ce chapitre, on étudie ainsi la forme des dépendances
affines qui peuvent engendrer des structures similaires aux MARS, tant sur des espaces de
données d’entrée, que sur des espaces d’itérations pour le passage de résultats intermédi-
aires. Il est nécessaire que soit préservée l’uniformité des ensembles de données consommés
par chaque tuile, c’est-à-dire la forme et la position de chaque ensemble, pour les qualifier
de MARS.

Il ressort de cette étude que peuvent amener à des MARS les dépendances affines
uniques, ou celles multiples partageant la même partie linéaire ou, à défaut, le même
noyau. On propose également une méthode construction des MARS dans ces cas. Le
cas des dépendances entre espaces d’itérations déjà tuilés est étudié, et une conjecture
sur l’existence de MARS est établie. Cette conjecture soumet l’existence de MARS dans
l’espace producteur, à l’existence d’un lien entre un déplacement dans l’espace consom-
mateur et un déplacement dans l’espace producteur.
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Chapter 2

INTRODUCTION

Performance optimization is a major topic of computer science today. The continued
demand for performance drives the emergence of domain-specific hardware accelerators,
under the form of fully application-specific integrated circuits (ASICs), accelerators im-
plemented inside configurable chips (field-programmable gate arrays, FPGAs), or also as
specialized units within general-purpose processors.

Creating domain-specific hardware is not sufficient to get a high performance; the
hardware must be fully exploitable and exploited. To this aim, hardware and software
developers have to respectively provide and uncover parallelism, and correctly exploit the
memory hierarchy. While general-purpose processors feature caches, dedicated accelera-
tors instead rely on carefully-tuned memory management as well as on-chip and off-chip
data movement. In both cases, it is up to the hardware designers and application devel-
opers to make the best usage of bandwidth: they must seek to use every cycle to transfer
useful data on the memory interface.

Compilers have largely improved over the 2010 decade in terms of both automatic par-
allelism extraction and cache utilization. In particular, they have control over the memory
access pattern, which is the sequence of memory accesses performed by the accelerator.
By leveraging value reutilization, they reduce the volume of data transiting through the
memory hierarchy. This is not sufficient to get the best performance out of the memory
subsystem. Designers and developers still have to manually perform memory allocation,
that is, specifying where (physical chip, bank) and in which order (layout) the data used
by their accelerator is stored. A good data layout has a significant impact on performance:
it makes it possible to get contiguous, regular access patterns, leveraging the highest per-
formance out of caches, prefetchers and controllers.

Memory architectures are also evolving and diversifying: high-performance computers
are moving away from a central memory of a single type, to multiple memory chips
close to the processing units, each with its own bandwidth and random access latency.
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The performance of a certain program depends on its utilization of the specific type of
memory available and the memory architecture.

Tuning the data layout in memory has been known to improve performance of nu-
merous programs, but remains a difficult problem to this day. Purpose-built layouts for
specific applications exist, but automation is desirable. In this document, we propose
generic memory layouts that improve bandwidth utilization, and automatically derive
such layouts from the programs themselves using compiler analyses.

This chapter motivates and gives an overview of this Ph.D dissertation. Section 2.1
details and motivates the specific problems that are solved in this document; Section 2.2
gives an overview of the solutions proposed.

2.1 A need for further memory optimizations

In this section, we explain the continued necessity of optimizing memory accesses.
While there is an immediate challenge caused by the continued increase in pressure on
memory due to more parallelism being exploited, there is a long-term challenge posed by
the widening of the space of memory architectures. New memory architectures will be
under-utilized unless the data layout and access pattern are carefully tailored to them.

The next two subsections detail this argument; Sections 2.1.3 and 2.1.5 focus on the
specific problems caused by data layout and access patterns.

2.1.1 An increasing pressure on memory due to parallelism

Processor chips keep containing more logic cells, mainly due to progresses in silicon
manufacturing. Thanks to these area gains, more computation units can be put in the
same silicon space. These units are designed to operate in parallel; in order to get the
best performance from this silicon, a program needs to fully exploit its compute units,
and must therefore exhibit parallelism.

New hardware is massively parallel

Current architectures leverage multiple levels of parallelism, from low-level vector op-
erations to high-level parallel nodes in a machine cluster.

On CPU and GPU platforms, the parallel computation units are grouped in vector
units, that can perform the same instruction on multiple operands. This model is called
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Single-Instruction, Multiple Data (SIMD). On FPGA and ASIC designs, parallel compu-
tation units are explicitly specified, and it is the job of the hardware developer to ensure
that all processing units and memories can be actively used at all times. Large-scale sys-
tems feature many of these chips that all run in parallel, which adds another layer of
parallelism to exploit, and more parallelism to be exhibited by the program.

Hardware designers also have optimizing compilers at their disposal called high-level
synthesis (HLS) engines. These transform imperative code like that executed on CPU or
GPU into a hardware architecture; in doing so, they also rely on parallelism extraction
techniques. Section 3.3 covers some of their specific optimizations to produce parallel
hardware. Deriving a parallel architecture and fully utilizing it are two interdependent
challenges; there is active research on HLS tools with respect to scheduling and resource
sharing ([44, 60, 82, 87]. . . ).

Auto-parallelization increases memory pressure

Automatic extraction of parallelism has significantly evolved thanks to active and
continued research for more than 30 years; such automation reduces the burden on the
developer, who no longer has to explicitly state where the parallel computations can
happen in the program. A series of optimization passes exist in this regard.

Optimizers and frameworks exist to leverage various levels of parallelism:
— Data-level parallelism: loop vectorization, which has been part of state-of-the-art

compilers for years [6] and usually makes parallel computations in a loop explicitly
appear. Superword-level parallelism extraction [46] can group together isomorphic,
parallel operations and issue a vector instruction for them.

— Instruction-level parallelism: a superscalar CPU can execute multiple instructions
in parallel in its various execution units. Part of this parallelization task is done
in out-of-order CPUs by the re-order buffers (ROB), provided they can find inde-
pendent, non-conflicting instructions in the program. Compilers can also re-order
instructions to extract ILP; this is especially used for in-order processors, like very-
long instruction word (VLIW) processors ([59]).

— Thread-level parallelism: Loop tiling [41], on top of reducing memory accesses
of a program by making it cache-friendly, gives coarse-grain parallel workloads
implementable as parallel threads. Calls to OpenMP make it easy to exploit the
parallelism leveraged by tiling.
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Technology Bandwidth Latency Capacity Usage
U280 DDR4 [52] 38 GB/s 110 ns 32 GB Main memory

Amazon F1 DDR [15] 57 GB/s 561 ns Variable (GB) Accelerator memory
U280 HBM [52] 612 GB/s 108 ns 8 GB Accelerator memory

Table 2.1 – Benchmark figures of various memory technologies (DDR4, HBM) and plat-
forms (U280 board, Amazon F1 datacenter platform).

The exploitation of each level of parallelism increases the memory traffic. To process
more operands at a time, the processor needs to get these operands from its memory
hierarchy, which must in turn handle all this extra traffic without becoming a bottleneck.
When this happens, the design is said to be memory-bound.

2.1.2 A widening space of memory architectures

New workload-specific memory technologies

Memories have intrinsic characteristics: access latency, bandwidth and capacity. How
each system is manufactured determines these three parameters, that are in a tradeoff:
a high bandwidth requires parallel access to a large number of data, and therefore a
partitioning of the data within the memory. Partitioning increases the random access
latency due to additional arbitration and multiplexing. Higher capacities also increase the
multiplexing needs, and in turn the latency.

Each component in a system has its own bandwidth and latency requirements: for
instance, CPUs tend to perform random accesses and need low access latency, while
GPUs tend to perform regular access patterns and need a higher bandwidth. To cope
with all these usages, a wide variety of memory technologies are simultaneously being
developed. Table 2.1 shows benchmark results on various platforms using different memory
technologies; latency, bandwidth and capacity can significantly vary from one platform
and memory technology to another.

In order to get the best performance from these memory chips, how the programs use
memory has to be tailored to the chosen technology.

More complex memory subsystems

Memory chips are generally part of a memory subsystem so that various components
can access them. Central memory subsystems are among the most commonly imple-
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mented: a machine has a central memory all of its components (e.g., CPU, GPUs, daughter
accelerator cards) can use, with a high latency, low bandwidth and high capacity. The
pressure on such central memories and their limited bandwidth cause contention, hinder-
ing application performance.

Historically, caches and prefetchers have reduced the pressure on central memories;
these features are private to each chip, and fail to address the contention issue where
multiple accelerators exist, for instance in Systems-on-a-Chip (SoCs).

Distributed, networked memory subsystems are being developed to increase the overall
bandwidth and relieve contention, in both small-scale systems (network on chip, NoC)
and large-scale systems (software-controlled memory accesses).

On top of those challenges posed by individual memories, complex systems add a
placement problem: accessing a random location in a complex subsystem has a high
latency cost, even more so if the data is in a remote node of a distributed memory
system. Adapting the placement of data within the subsystem becomes crucrial to get
performance.

2.1.3 Bandwidth-bound FPGA accelerators

On current architectures, the literature contains a significant number of references
to bandwidth-boundness, particularly regarding FPGA accelerators. Two main memory
subsystems surround FPGA accelerators today: DDR memories, shared with the rest of a
System-on-a-Chip such as Xilinx Zynq; and the newer high-bandwidth memories, mostly
available on high-end FPGA boards.

Cong et al. [19] evaluated DDR-based FPGAs and Graphics Processing Units (GPUs)
by means of a benchmark suite called Rodinia, and bandwidth appeared to be a bottleneck
on most tested benchmarks; an increase in available bandwidth to that promised by
High-Bandwidth Memory (HBM), provided it is exploited, would lead to three FPGA
benchmarks surpassing GPU at a better performance per watt ratio.

Some applications are intrinsically bandwidth-bound because they expose little reuse
of their input data. This is the case of matrix-vector multiplication, used for instance in the
fully connected layers of convolutional neural networks. Each element of the matrix is only
used once, and therefore this application is known to be memory-bound on recent DDR-
based FPGA platforms: in 2019, design space exploration for the Caffeine framework [86]
to optimize the convolution part of a neural network on FPGA, resulted in the observation
that all designs proposed by the framework would be bandwidth-bound. Acceleration of
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SpMV on FPGA is still an issue in 2023 [48], calling to a full utilization of the bandwidth
by exploiting sparsity and data compression.

High-Bandwidth Memory is available in off-the-shelf FPGA boards such as Xilinx
Alveo U280. While HBM increases the available bandwidth, it does not increase its uti-
lization unless data is spread over all banks. HiSparse [26] is an instance of FPGA ac-
celerator class for matrix-vector multiplication where such a partitioning is performed.
Microbenchmarks [52] show that a single HBM bank can reach about 14 GB/s whereas
multiple banks can give a 421 GB/s bandwidth. This underlines the need for an automated
data layout and placement.

2.1.4 Recent improvements in the utilization of memory sub-
systems

When memory access is the bottleneck, all the available parallelism cannot be ex-
ploited. To relieve this, the program must be optimized with multiple respects:

— Improving the access locality, re-utilizing values already on chip and reducing mem-
ory accesses,

— Fully utilizing the memory subsystem when accesses are needed:
— Avoiding cache misses: the memory accesses must re-use recently accessed ad-

dresses,
— Using prefetchers: the sequence of accesses must be regular enough to be rec-

ognized by the prefetching mechanisms,
— Exploiting the burst feature of memory buses: the addresses being accessed

must be adjacent to each other.
Compiler passes have been developed to automatically address the above issues. This

section gives a broad view of the optimizations they brought.

Improving the access locality

The first key to improving memory performance is to reduce the number of memory
accesses, thereby improving the program’s arithmetic intensity (AI) [78, 80]. Other ways
to describe this in the literature are improving locality or reducing the reuse distance,
with a common idea that the closer in time the multiple accesses to a value, the more
likely it is to stay on chip registers or be present in a closer cache level.
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Well-known locality optimizations promote memory to registers [53] and re-order in-
structions to re-use values freshly computed instead of sending them to memory. Value
reutilization is a key component of major production compilers such as GCC or LLVM
today. On FPGA accelerators, it is the developer’s task to specify which data movements
must take place as synthesis tools do not promote memory accesses to registers. The work
of Wei et al. [77] is an instance of deep neural network where memory accesses are saved
by keeping some intermediate results on chip. This approach involves partitioning the re-
sults with knowledge of the consumers of the intermediate results. One of the approaches
in this Ph.D dissertation automatically computes such a partitioning and can be used for
this purpose.

More advanced locality optimizations target caches. Loop tiling [41, 45] is one of
them: it aims at breaking up a loop nest into atomic blocks that have a known memory
footprint, typically the size of some level of cache. It is possibly applied at multiple levels
[92], from registers [42, 43] all the way to parallel nodes. It is applicable and can be
profitabke on CPUs as well as GPUs [36]. Although tiling can be applied purely as a
loop transformation, it changes the execution order within the loop nest. Prior analysis,
possibly automated [11, 12] must assert that it is legal, and profitable. Section 3.4.3 covers
tiling in more detail using the polyhedral representation of a program. Tiling has made its
way into production compilers; it is notably implemented in Polly [33] part of the LLVM
optimizing compiler. Cache behavior is well-known, to the point it is possible to model
and tune programs based on analytical cache miss equations [32].

Improving access patterns

Locality optimizations determine which addresses (containing which values) will be
accessed at a certain point in time. Re-ordering these accesses can exhibit regularity in
the address sequence and yield better performance.

Regular access patterns enable usage of prefetchers and contiguous access patterns
(more restrictive than regular) enable the use of burst features, both improving per-
formance. Prefetcher-friendliness optimizations notably try to expose regularity in the
memory accesses that can be identified by the prefetcher.

Burst-friendliness is generally not an issue on CPUs and GPUs because the granularity
of memory accesses is at least a cache line. Therefore, burst-friendliness is a problem
mostly for FPGA and ASIC designs. Nevertheless, the fundamental issue at stake is
not FPGA-specific: data contiguity is necessary to get good vector unit performance.
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Auto-vectorizing compiler passes such as superword-level parallelism (SLP) [46] extractors
required such data to be contiguous, as data movement or shuffling within vector registers
incurs an overhead that could lead to a slower code despite vectorization. More recent SLP
extractors [49] can change the data layout if the accesses are regular enough, e.g. with a
constant stride. It is also possible to re-order accesses within a DDR controller itself to
exhibit bursts, and reduce the access latency seen from the outside of the controller [20].

The optimizations above do not guarantee the absence of cache misses, burst- or
prefetcher-friendliness: how the data is laid out in memory can prevent the appearance of
regular or contiguous access patterns. The next subsection deals with the specific issue of
data layout.

2.1.5 Application-specific data layouts increase bandwidth uti-
lization

A raison d’être of this Ph.D dissertation is that the choice of data layout in memory
affects memory access performance. As said in Section 2.1.3, irregular and non-contiguous
accesses prevent correct utilization of prefetchers, of auto-vectorizers but also cause high-
latency scalar accesses on global memories.

There have been various attempts at modifying the memory layout that resulted in
performance improvements. We give examples of them in the next subsections, and make
the case that actually generalizing and automating them is a contribution towards fully
utilizing current and future architectures.

Domain-specific layouts for FPGA accelerators

Due to the massive parallelism FPGAs offer, they are prone to memory-boundness.
The literature contains a wide variety of methods to fully exploit the bandwidth of mem-
ories connected to FPGA accelerators. They mainly rely on increasing spatial locality
by exhibiting data contiguity, which this dissertation largely covers. How this is achieved
depends on the application, of which two examples are given below.

One way to exploit memory contiguity is to build streams of data, where the order of
writing of the data is the same as the order of reading. It is possible thanks to works like
SODA [13], to get such layouts for FPGA accelerators of applications like dense linear
algebra or stencils.
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An application that benefits from domain-specific layout is sparse matrix-vector prod-
uct. On top of exploiting sparsity to compress the matrix data, further optimization is
done with the layout of the compressed data, yielding a higher bandwidth utilization. It
is possible, like done in HiSparse [26], to partition the data to match HBM banks, thereby
exploiting all the banks of an HBM stack.

Fine-grain data layouts for vectorization

The works presented in this dissertation target domain-specific hardware accelerators.
Yet, the problem being tackled is more general. It is for instance possible to improve
the performance of instruction-set architectures in certain scenarios, such as vectorized
programs, by using specific data layouts.

Vectorization is exploitation of a chip’s vector units instead of equivalent scalar oper-
ations. It is achieved by using special instructions of the processor. Such instructions typ-
ically consist in replicating a single operation over multiple operands, (“single-instruction
multiple-data”, SIMD).

While vectorization helps in improving compute unit utilization, it requires careful
data placement to limit the movement from, to and within vector registers. Solutions to
this problem exist for domain-specific applications; for instance, for stencil computations,
a specific data layout for the vector registers, distinct from that of the original arrays, can
reduce the overall data movement from/to and within the vector registers [83].

2.1.6 The case for automation of memory layout optimizations

We make the case that memory layout optimizations should be made automatic, for the
same reason as other performance optimizations. Such optimizations are hard to write by
hand and, although nothing prevents the developer from applying manual optimizations,
compiler-based ones provide:

— “speed”: what would take a few hours or days for a human to design just takes
seconds (e.g., manual RTL design is orders of magnitude more time-consuming
than HLS).

— explorability: it is posssible to automatically generate a wide variety of designs,
evaluate them and pick the best one.

— applicability: a single compiler pass can generate a memory allocation, possibly
using target-dependent cost models but using the same optimizer code, and target-
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dependent backends generate all the data movement code necessary to use an
allocation.

How to automate the derivation of a good memory layout is an issue in itself. Com-
pilers can syntactically invert the dimensions of memory arrays using cost metrics [69].
Syntactic manipulations may however not be sufficient; Polyhedral optimizers can pro-
duce complex domains such as diamond tiles [9], and likewise complex access patterns, for
which a complete re-engineering of the memory layout is needed to obtain good memory
performance.

In this dissertation, we propose to use the polyhedral representation of programs to
build memory layouts and propose algorithms and systematic methods to compute mem-
ory layouts. These techniques will work provided a certain number of hypotheses, deter-
mined for each technique, are verified.

2.2 Contributions of this Ph.D

We have made the case for the necessity of automated memory layout optimizations.
Most of the contributions of this Ph.D. rely on one idea: like prior work generates parallel
code from the polyhedral representation of a program, it is possible to generate contiguous
memory layouts from the same polyhedral representation. Such contiguous layouts enable
domain-specific hardware accelerators to have a high bandwidth utilization.

Chapter 3 covers the technical background all of this document relies upon; Chapters 4
through 7 cover the solutions proposed by this Ph.D, of which a brief summary is given
below. They are described below, from the most restrictive scope of application to the
least restrictive.

2.2.1 A multi-level contiguous memory layout for rectangular
tiles

In Chapter 4, we focus on programs tiled with a hyper-rectangular tile shape
and that have uniform dependences. For these applications, we can compute the flow-in
and flow-out data as parts of thick faces, called “facets”, of neighboring tiles. Therefore,
we allocate data for these facets in such a way to enable contiguity within them and
across them. These two levels of contiguity enable long burst accesses that result in a
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high bandwidth utilization, while keeping and a low redundancy. This allocation scheme
is called Canonical Facet Allocation (CFA).

We propose an evaluation of this allocation scheme with an FPGA implementation of
benchmark accelerators as task-level pipelines. For these, the external I/O phases (off-chip
CFA from/to on-chip allocation) are generated using a compiler pass, and show that we
are able to reach close to bus bandwidth.

2.2.2 An irredundant, atomic partitioning of inter-tile commu-
nications for arbitrary tile shapes

In Chapter 5, we consider programs tiled with arbitrary shapes, rather than
rectangles as required by Chapter 4. Based on the observation that only a part of the
flow-out of each tile is used by every of its consumer tiles, we proposes a breakup of
these flow-in and flow-out sets that guarantees atomicity and irredundancy properties,
and a method to construct such a breakup. The resulting sets, called Maximal Atomic
irRedundant Sets (MARS), can be used in a variety of applications among which memory
allocation, but also error detection.

2.2.3 A compressed and contiguous memory layout for arbitrary
tile shapes

Chapter 6 is a use case of the MARS: it introduces a memory allocation based on
the MARS that exploits its irredundant and atomic natures. These two properties allow
for contiguity, data packing and compression, thus increasing the bandwidth utilization
and decreasing the volume of data. This chapter brings in two contributions: through
an optimization problem, it exploits the MARS irredundancy to minimize the number
of input and output transactions for each tile; and, the atomicity property is exploited
by automatically compressing and packing the data. A code generator is implemented
and the resulting allocation and access pattern are evaluated on a selection of FPGA
accelerators.
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2.2.4 An extension of the data flow partitioning to affine depen-
dences

One limitation of MARS is that it does not apply to affine dependences, that make up
most of the input data on workloads such as matrix multiplication. Chapter 7 extends the
idea of atomic irredundant partitioning to data spaces with affine dependences.
Affine dependences bearing several properties (notably sharing the same null space) can
yield such a decomposition; in this case, Chapter 7 proposes a method to partition the
data into MARS. This chapter’s theoretical contribution makes it possible to propose
a data layout for the entire data flow with the same objectives as the one obtained in
Chapter 6.
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Chapter 3

BACKGROUND

This dissertation relies on a fairly large stack of technical background: it uses both
low-level hardware design techniques and high-level mathematical representations of pro-
grams. Between these, multiple levels of abstraction are involved and interact together.
All of these levels of abstraction are necessary to efficiently use all the compute power
of accelerators. This chapter aims at explaining the abstraction stack and giving design
techniques related to memory accesses.

It first covers hardware memory architectures, their interfaces and controllers. It goes
through the synthesis of compute and memory architectures from high-level code, then
covers the high-level polyhedral abstractions used to analyze and transform the source
program; finally, it explains how high-level transformations can have a controlled effect
on low-level memory accesses.

3.1 Locality and performance

The performance of a program on a platform, i.e. how many computations it can
perform per time unit, is determined by how the compute power of the platform and
how the memory subsystem are utilized. In this dissertation, the focus is on the memory
subsystem and locality optimizations; this section gives an insight into the effects of these
optimizations on performance.

3.1.1 Roofline model

Quantiying the performance of a program is necessary to determine which kind of
optimizations are needed, i.e. where there is room left for performance gains.

The roofline model [78, 80], illustrated on Figure 3.1 is a visual way to see the effects
of locality improvements. The throughput a system can reach is bound when either a
memory roofline or a compute roofline is hit. Compute rooflines represent the maximal
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Figure 3.1 – Roofline model

throughput attainable with a given set of compute units; in the case of hardware designs,
the maximum number of compute units that fit a given area budget are considered.
Memory rooflines represent bandwidth caps intrinsic to the memory subsystem; there is
one such roofline per level of the memory hierarchy.

To figure out the position of a program or hardware design in such a graph, one must
compute its arithmetic intensity (AI), which is defined by:

AI = number of arithmetic operations
volume of I/O

A higher AI generally means a better achievable performance, thanks to a reduced likeli-
hood of memory-boundness.

Memory-boundness results in an under-utilization of the on-chip parallel compute
resources due to stalls; using a roofline graph, it is possible to explain how improving
both spatial and temporal locality can relieve memory-boundness. The next subsection
focuses on the two notions of spatial and temporal locality.

3.1.2 Access locality

The performance of memory accesses largely depends on how close together they are,
in both time and space; correct utilization of the memory subsystem by improving the
sequence of addresses in both time and space results in a good performance. There are
two qualitiative notions of locality used to characterize the utilization of the memory
subsystem by a program or accelerator.
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Temporal locality characterizes how close in time the same addresses are being re-used
by the program with a re-use distance. The lower this distance, the more likely the data is
to be in a close level of cache; if the reuse distance is low, the data may still be available
in on-chip registers. Improving temporal locality reduces the number of global memory
accesses, and therefore increases arithmetic intensity. As shown in Figure 3.1, a higher
temporal locality gives potential access to higher compute performance by limiting the
pressure on memory.

Spatial locality, on the other hand, characterizes how close in space consecutive ad-
dresses being accessed are. If addresses are all adjacent to each other, the program has
better locality than if they are not. For instance, a unit-strided access sequence has better
spatial locality than a two-strided sequence, because the latter sequence does not exhibit
any contiguity. In Figure 3.1, the effect of spatial locality on performance can be seen as
the bandwidth utilization increases, thereby giving access to more compute power for the
same arithmetic intensity.

3.2 Memory architectures and transfers

A memory architecture usually encompasses the storage locations of all active data
with the exclusion of cold data stored on disks. Such memories are of the following type:

— Disk, usually for swapping. These have low throughput (hundreds of MB/s for me-
chanical disks to 32 GB/s for PCIe SSDs), very high access latency (milliseconds)
and very high capacity (terabytes);

— DDR random access memory. This is where the bulk of a system’s memory resides.
It is attached to the main processor system or is on some daughter card, e.g. a GPU.
It has high throughput (up to 128 GB/s), low latency (below 1 microsecond) and
low capacity (below 1 TB usually).

— HBM random access memory. These have very high throughput (more than 500
GB/s) and a higher access latency than DDR (up to a microsecond) due to extra
arbitration, while being usually smaller than regular DDRs. These are used for
high-throughput processing.

— Caches, that are embedded on CPU or GPU chips. These have low access latency
(nanoseconds) and low capacity due to the area they take and the expensive logic
needed to manage them.
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(a) Scalar access pattern: there is a latency between each data transfer.

Address

Data 987

Latency

86 ~
123

Latency

101 → 104 ~
456 789 012

101 102 103 104

(b) Burst access pattern: multiple values are retrieved from consecutive addresses (101 to 104),
without latency between each value. There is still a latency between accesses (non-contiguous
in this example).

Figure 3.2 – Burst accesses span over multiple addresses in a single transaction, amortizing
the transaction latency over all elements accessed.

— Registers, that are located right next to the compute units. These have the lowest
latency (ideally same-cycle access) but are also the rarest storage resource. They
are the only type of memory onto which operations are directly performed, barring
compute-in-memory engines.

Registers are driven by the compute engines themselves, to which they belong. Other
kinds of memories need controllers to be accessed.

3.2.1 High-bandwidth controller features

Memory controllers geared towards high bandwidth accesses feature ways to hide ac-
cess latency of individual memory addresses, mainly by using some sort of pipelining.
Burst-mode accesses and transaction-level pipelining are usually available; this subsec-
tion describes both features.

Burst-mode transactions

Memories are seldom dedicated to a single component, and are more usually connected
to shared buses. Transaction-based shared buses require the use of two-way handshaking
protocols before data transfer can begin. Arbitration and access protocols ensure that
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there are no access conflicts. During this time, the data transfer unit on the accelerator
side is idle, as between data transfers in Figure 3.2a.

To amortize the access latency, shared buses usually feature burst-mode accesses,
which perform several back-to-back accesses at consecutive addresses, as illustrated in
Figure 3.2b. In order to use this burst mode, the accelerator must know:

— how much data it needs to transfer,
— which address is the first one to be accessed.
In first approximation, the latency of such accesses is modelled as an affine function:

to transfer Nwords, the number of cycles will be:

tburst(Nwords) = thandshake + Nwords

words per cycle

It is clear that the bigger Nwords is, the lower the impact of thandshake and the higher
the bandwidth utilization.

It is possible to hide the latency caused by the handshake protocol by overlapping
actual data transfers with subsequent requests. Such overlapping can be compared to a
two-stage access pipelining, splitting requests and transfers. This feature is present in the
AXI4 bus, and exploited by some high-level synthesis tools described in the next section.
Notably, when the end of a burst is contiguous to the start of the next burst, the tools
generally can schedule them in a pipeline.

3.3 High-level synthesis

Generating hardware is usually done at the register-transfer level (RTL). This level of
abstraction is very low and it is very difficult to reconstruct the algorithm from an RTL
representation. This prevents rapid exploration of the design space, and requires skilled
engineers to build hardware devices.

Well-known languages in the computer science field are mostly imperative languages
such as C or C++. These languages do express the what of the program, i.e. which
operations should happen on which operands, and abstract away the how which is bit
manipulations. RTL on the other hand expresses the how and does not contain the what.
When we want to design a piece of hardware, we start from the algorithm and go down
to the bitwise operations that it needs to execute.
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High-level synthesis (HLS) consists in automating hardware synthesis from an imper-
ative language, and generating RTL from this language. Commercial tools such as Vitis
HLS and Catapult accept C and C++ code as input, mostly due to these languages being
used in embedded systems development and well-known from the EDA field.

3.3.1 From C/C++ to an architecture

Imperative languages specify an ordered sequence of instructions which lead to some
result being computed. Control structures allow the program to repeat sub-sequences of
instructions (loops) a finite number of times or until some condition is met, and also to
selectively execute sub-sequences depending on conditions. It is possible using finite state
machines to represent such programs that will execute the same sequence; the HLS engine
will extract this representation; generating the corresponding RTL from a state machine
is then a syntactic operation.

Doing this however leads to a purely sequential hardware accelerator with poor per-
formance. It is necessary to express parallelism to get better performance.

C and C++ do not intrinsically express parallelism; it is difficult to figure out whether
two operations can be executed in parallel or not, and which operations another one
depends on before it can be executed. The developer, as well as some tools, knows these
dependences. Special directives called pragmas are used to pass these hints to the HLS
engine.

The core of an HLS engine does three main tasks to leverage RTL from imperative
code: it creates the operators asked for by the user, schedules the operations, and binds
each operation to an operator. While C and C++ contain the sequence of operations,
scheduling and architectural directives exist to generate performant accelerators.

Architectural directives

Two kinds of parallelism can be expressed as compiler directives: synchronous paral-
lelism (replication) and pipelining.

Replication, achieved by unrolling a loop, creates multiple copies of the same piece of
hardware that run in parallel, as in Figure 3.3. For this operation to be profitable (i.e.
result in an increase of throughput), consecutive loop iterations must not depend on one
another; also, it increases resource usage because multiple hardware operators are needed
to perform multiple operations in parallel.
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1 for(int i = 1; i <= N -1; i++) {
2 # pragma HLS UNROLL
3 A[i] = (B[i -1]+B[i]+B[i+1]) /3;
4 }

+ + /

+ + /

+ + /

… … …

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Figure 3.3 – Loop unrolling in HLS creates parallel operators, and executes the loop
iterations in parallel provided they are independent.

1 for(int i = 1; i <= N -1; i++) {
2 # pragma HLS PIPELINE II=1
3 A[i] = (B[i -1]+B[i]+B[i+1]) /3;
4 }

+ + /

+ + /

+ + /

…

A[1]

A[2]

A[N-1]

…

Cycle C1 C2 C3 CN CN+1…

Figure 3.4 – Loop pipelining in HLS overlaps multiple iterations of a loop, starting a new
iteration every II cycles (here II=1), provided there is no dependence between them.

Pipelining, shown in Figure 3.4, allows multiple consecutive iterations of a loop to be
overlapped, by splitting each iteration into smaller operations called stages. Each stage
executes an operation for a different loop iteration. Contrary to unrolling, pipelining does
not require additional operators: it schedules a different loop iteration on each operator.
For two iterations to be in the pipeline at the same time, they must be parallel, which
means that the reuse distance (number of operations between the production of a value
and its first use as an operand) is greater than the pipeline’s depth.

It is possible to have multiple levels of pipeline, at different granularities. Fine-grain,
data-level pipelines split operations on scalar elements to increase the processor’s through-
put. A coarse-grain, task-level pipeline is usually applied to high-throughput accelerators
to multiplex input/output operations and computations, thereby hiding the I/O latency.
Figure 3.5 shows such a “read-execute-write” pipeline, typically obtained with the follow-
ing code:
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Figure 3.5 – Task-level structure of an accelerator: read, execution and writeback happen
separately.

1 void hls_toplevel (float * d_in , float* d_out , int i, int j) {
2 # pragma HLS INTERFACE m_axi port=d_in bundle = bus_ctl
3 # pragma HLS INTERFACE m_axi port=d_out bundle = bus_ctl
4 # pragma HLS DATAFLOW
5 float input_arr [20][20];
6 float output_arr [20][20];
7 input(d_in , i, j, input_arr );
8 process (input_arr , i, j, output_arr );
9 output (d_out , i, j, output_arr );

10 }

Scheduling directives

An HLS engine is primarily used to create parallel architectures. However, even if
multiple replicas of an operator are generated, they may not be used if the operations to
be executed are indeed not parallel, i.e. they depend on each other. The HLS tool can,
to some extent, recognize when there is such a dependence. In order to guarantee the
correctness of resulting designs, an HLS tool is conservative and will assume dependences
that do not exist; it will also fail to see dependences arising outside of the program, for
instance due to side-effects or protocols.

The DEPENDENCE pragma can be used to indicate, within a loop, whether a variable
depends or not on another one.

For instance, in the following loop, the array A is used in both read and write directions
by the same statement, and the DEPENDENCE pragma indicates that no read-after-write
dependence exists on this variable, i.e. that none of the read accesses to A depend on a
write within this loop.
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1 for(int i = 1; i <= HALF - 1; i = i + 1) {
2 # pragma HLS DEPENDENCE variable =A type=RAW inter false
3 A[HALF + i] = (A[i - 1] + A[i] + A[i + 1]) / 3;
4 }

3.3.2 Memory accesses in HLS

The usual programming model for CPU architectures assumes a single virtual memory
space into which all data is contained. A compiler then generates data movement code
from memory to registers and vice-versa; the cache hierarchy is usually transparent and
no code is necessary to manage caches.

FPGA architectures, like GPUs, contain scratchpad memories which management is
explicitly specified by the developer: data movement in and out of local memories needs
to be specified. Global memories, on the other hand, are accessed behind shared buses
and the traditional memory model can be used on them.

The limitation of local memories is the number of ports (parallelism), whereas the
limitation on global memories is the access latency.

Local memories

C and C++ do not have specific directives to specify the placement of data on local
scratchpads and its distribution. An HLS tool like Vitis provides ways to automatically
partition the C/C++ arrays into a finite number of scratchpads, which increases the
number of available ports at the cost of a higher resource usage.

Global memories

Vitis HLS also provides global memory access directives to enable shared bus interfaces
(such as AMBA, AXI); when such a directive is used, burst mode access (see Section 3.2.1)
becomes available. Burst-mode accesses need to be supported by downstream bus con-
trollers and memories. High-bandwidth controllers and chips, such as DDR and HBM
chips, typically feature burst accesses.

Using burst mode is essential to get good access performance, as it amortizes the access
latency of a single transaction over all data that is being accessed. In order to use it, the
HLS engine must recognize a burst access, which is possible with one of the following
constructs:
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Figure 3.6 – Changing layouts is necessary to get both contiguity and parallelism.

— A unit-strided loop with the counter being used as an address (e.g., a loop iterating
over an array and copying an off-chip array into an on-chip buffer), and such that
pipelining with an initiation interval (II) of 1 cycle (one new word each cycle) is
possible:
1 for(int i = 0; i <= 9215; i = i + 1) {
2 # pragma HLS PIPELINE II=1
3 onChip [i] = offChip [5+i];
4 }

— A call to a system library (memcpy()):
1 memcpy (onChip , offChip + 5, 9215 * sizeof (float ));

Note that bursts may be generated for loops where II ⩾ 2, but the throughput will
be divided by II in this case.

Use of multiple layouts

High-performance accelerators must feature high-bandwidth accesses as well as high
parallelism. It is therefore necessary to lay out the data on chip in such a way that parallel
accesses are possible, while preserving contiguous accesses on the off-chip memory.

When such layout changes are implemented, they happen on the accelerator’s side.
Accesses to local memories and registers do not feature burst mode, and therefore do not
need to be contiguous. The HLS engine generates the routing and arbitration necessary
to dispatch the data from a single global memory bus to on-chip distributed memories.

The layout separation and changes make it possible to decouple the search for off-chip
and on-chip layouts.
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3.4 Polyhedral model and tiling

High-level synthesis is done from code written in imperative languages. This abstrac-
tion can describe the exact sequence of computations and memory accesses to be peformed;
yet, it fails to capture data flow information, which is the uses of every produced result,
when every intermediate result is needed, which statement will use it, and when it will
no longer be used and can be discarded.

Capturing data and control flow in a closed-form representation allows a compiler to
work with programs as mathematical objects. One such representation is the polyhedral
model, in which programs are represented with two kinds of mathematical objects: sets,
on the one hand, and relations, on the other hand.

3.4.1 Abstractions

A polyhedral representation of a program comprises at least the following elements:
— An iteration space, which is a union of subsets of Zd, each point of which represents

one instance of a program’s statement (one specific valuation of the loop iterators),
— Data spaces, each of which is associated to a variable in the program. Each space

is a subset of Zn, and each point in this space is a cell in the corresponding C-style
array.

— A schedule, which is an affine function mapping each iteration to an integer or a
vector of integers, specifying a relative order of execution of iterations,

— Array access informations (reads and writes) in the form of affine maps from the
iteration spaces to the data spaces.

The polyhedral model requires sets of integer points and relations defined by affine
constraints, which means that the relations between sets (memory access functions, de-
pendence graph) are all affine. It specifies in what space and which order computations
happen, but does not necessarily specify what is being computed. For this, it may be
completed by equations, in which case it is a polyhedral equational model. An example
of such a model is Alpha [47, 55].

We can consider two levels of polyhedral abstraction:
— The conventional polyhedral model, that is composed of a finite collection of state-

ments (S), each having its own iteration space (DS). Statement operations are
abstracted away, except the memory accesses, i.e. reads (RS) and writes (WS)
that take the form of affine maps. The program’s variables (A), scalars or arrays,
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Figure 3.7 – Iteration and data spaces in the classical polyhedral model. A memory map
gives each data space point an address.

make up the data spaces DA. For instance, the array int A[200][100] is mapped
to the set {A[i, j] : 0 ⩽ i < 200 and 0 ⩽ j < 100}. The statements reads and writes
maps have their domains in DS and their ranges in DA. The model also comprises
a schedule that is a partial order of the iteration space D = ⋃

S DS.
— The equational polyhedral model, that is composed of variables A, each defined

over a domain DA and which value at every point in DA is given by an equation.
In this manuscript, we will only be considering the classical polyhedral model, that

can be extracted from a sequential program using tools such as PET [75].

3.4.2 Modelling Dependences

In a C/C++ program, statements may have dependences between themselves, in the
sense that one statement needs the result of a previous one as an operand. It is possible to
model these dependences using affine relations; considering each instance of a statement
has an iteration point in the iteration space, a depenedence relation will map the producer
iteration point to the consumer iteration point.

Such dependence functions can be constructed algorithmically.
There are two families of dependences:
— “True” dependences, or flow dependences: these arise from the computation itself.

They are intrinsic to the program. For instance, a recurrence equation xi = xi−1 +2
carries a dependence (i − 1) 7→ i. In a C/C++ program, these dependences are
called read-after-write.
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— Memory-based dependences: these arise from the memory allocation. When multi-
ple iterations of a statement update the same memory cell, and the value contained
at a given moment is used to compute another value, the source value must not be
overwritten before that computation is done. These dependences are called write-
after-read. Also, the order of writes into a cell may need to be preserved. This
incurs write-after-write dependences.

Dependences prevent parallel executions of iterations: when an iteration, directly or
indirectly, depends on another, these two iterations must be executed in sequence for the
result to be correct.

Memory-based dependences are avoidable dependences: the memory allocation can be
constructed independently of the computation itself. This dissertation largely relies on
this fact and creates fresh memory allocations to favor memory bandwidth utilization.

True dependences, on the other hand, cannot be avoided. The polyhedral represen-
tation can however be transformed to find parallel iterations despite the existence of
dependences.

3.4.3 Tiling

Tiling [41, 63, 68, 79] is a transformation of the polyhedral representation of a pro-
gram that breaks up its iteration space into tiles, where each tile is atomic with respect
to dependences. Such atomicity allows, for instance, synchronization-free execution of
independent parallel tiles on different processors.

Tiling is implemented in most state-of-the art polyhedral compilers [11, 12, 33]. This
subsection explains the principle of tiling, gives an optimization problem to tile for per-
formance, and explains the consequences of tiling on the program’s data flow.

Principle

Tiling is a program transformation that seeks to increase parallelism, locality and
reuse. It consists in splitting an iteration space in similarly-shaped blocks, each of which
containing a certain number of iterations. Such blocks must be able to be executed atom-
ically, in such a way that multiple tiles may be executed in parallel.

Loop tiling increases both access locality and reuse. It can be applied at multiple
levels, for instance to leverage thread-level and instruction-level parallelism at the same
time.
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Tiling for thread-level parallelism is done so that the footprint of each tile fits in a
local memory dedicated to this thread. It may be the L1 or L2 cache in a CPU, or a
scratchpad memory in a GPU.

Legality Tiling must respect causality between iterations; therefore, it is not always
legal. Because tiles are atomic, there must in particular be no dependences in the PRDG
that would cross a tile boundary both ways, as in Figure 3.8.

i
0

1

2

3

4

5

6

i

t

0

1

2

3

4

5

6

t

Figure 3.8 – Rectangular tiling (cutting with a family of hyperplanes Hi : i = 4k, k ∈ N
and Ht : t = 3p, p ∈ N) is illegal on the left, and becomes legal on the right after time
skewing.

Mathematically, tiling cuts the iteration space into two subspaces, each one on one side
of an hyperplane. In a two-dimensional space, a hyperplane is a line; in a three-dimensional
space, a hyperplane is a plane. Tiling legality is checked by projecting the dependence
vectors onto a vector perpendicular to the tiling hyperplane. All the dependencies must
be in the same direction with respect to that vector (which means that they all cross the
tiling hyperplane the same way, or don’t cross it at all).

A tiling hyperplane H is legal if, for all dependencies b⃗i the following property is true.
Let c⃗ be a vector orthogonal to H (by definition of a hyperplane, there is such a vector).
Then: 

∀i, b⃗i · c⃗ ⩽ 0

or

∀i, b⃗i · c⃗ ⩾ 0

This means that we can “cut” the space into two along the hyperplane H and all depen-
dencies that cross the hyperplane, do so in the same direction.
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Multiple tilings can be applied to the same iteration space: in a two-dimensional iter-
ation space, it is possible to obtain two-dimensional tiles, for instance those in Figure 3.8.

Rectangular tiling

Rectangular tiling is the simplest kind of tiling: each tile is an hyper-rectangular block
within the iteration space. The families of tiling hyperplanes are all parallel to one canonic
axis. Figure 3.8 shows an instance of rectangular tiling with a Jacobi-like dependence
pattern.

Rectangular tiling does not require a polyhedral representation; it can be syntactically
performed as the composition of two loop transformations, loop strip-mining and loop
interchange. For instance, in Figure 3.9, the loops over i and j have been tiled with tile
size 4, resulting into outer loops over ii and jj with a step of 4 and outer loops over i
and j.

int i, j;
for(i=1; i <25; ++i) {

for(j=0; j <33; ++j) {
B[i][j] = A[i -1][j]

+ A[i][j] + A[i+1][j];
}

}

int ii , jj , i, j;
for(ii =1; ii <25; ii +=4) {

for(jj =0; jj <33; jj +=4) {
for(i=0; i <4; ++i) {

for(j=0; j <4; ++j) {
B[ii+i][jj+j] = A[ii+i

-1][ jj+j]
+ A[ii+i][jj+j] + A[ii+

i+1][ jj+j];
}

}
}

}

Figure 3.9 – Rectangular tiling applied to two dimensions of a loop nest.

Other kinds of tiling such as diamond tiling [9] exist, with different stances on the
parallelism / locality tradeoff.

Tiling for Parallelism and Locality

Impact of tile size on performance Common wisdom with tile size selection says
that it is done in such a way that some level of cache or some local memory is filled
with data. This is not always true, however. The issue of tile size selection is well-studied,
e.g. [16] or [56]. This chapter provides techniques where we assume good tile sizes can be
found through exploration.
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Figure 3.10 – Flow-out set of a tile with a Smith-Waterman dependence pattern. Depen-
dences pointing to other tiles are shown producer to consumer:.

The data space size also has an influence on performance: tiling, especially with powers
of two as tile sizes, may result in poor performance due to a large amount of cache misses,
despite the tile fitting in the cache. This phenomenon, called cache set conflict, is due to
the cache associativity, and can be avoided by padding the data arrays [37, 65].

Automatic selection of tile shape and size Tiling hyperplanes and sizes can be
algorithmically tuned to enhance parallelism and locality. PLuTo [11, 12] is one of the
most used tiling algorithms, that maximizes parallelism across tiles and locality inside the
tile; it will select tiling hyperplanes such that the number of dependences that cross each
hyperplane is minimal.

Data Flow in the polyhedral representation

A tile is a collection of iteration points, i.e. instances of statements that require input
values and produce output values. These values may come from other statement instances,
be used by other statement instances, or be program input or output. For individual
statement instances (individual iterations), these inputs and outputs may be both internal
to the tile, (i.e. the producing iterations are inside the tile) and external. In the latter case,
external production or consumption means that the results need to be communicated, for
instance through global memory.

We call flow-in and flow-out iterations those that, respectively, require values from
iterations external to the tile and produce values consumed by iterations external to the
tile. The flow-in set and flow-out set (as shown in Figure 3.10), proper to each tile, are
the collections of, respectively, all flow-in and flow-out iterations.
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3.4.4 Notations

Throughout this document, the notations and conventions of Table 3.1 will be used.

3.5 Polyhedral compilation and accelerator synthesis

The toolkit used in this dissertation comprises distant abstractions, from high-level
polyhedral abstractions to low-level synthesis techniques.

The tools used to bridge these abstractions are called polyhedral compilers. They are
optimizing compilers, that extract and process a polyhedral model from an imperative
program, and are usually source-to-source as their output is imperative programs. High-
level synthesis tools take their output and map it into low-level, synthesizable RTL. It
is then up to FPGA synthesis tools to issue a programmable FPGA bistream from this
RTL.

3.5.1 Extracting parallelism within the polyhedral model

A polyhedral representation contains all memory access information of the program,
and can capture dataflow information. This information can be used to detect possible
parallelism within a program.

Extracting dataflow information from a polyhedral representation is possible for in-
stance using Feautrier’s array dataflow analysis [27]. This information is carried in the
form of affine relations:

B =
{
B : (x⃗ 7→ Ax⃗ + b⃗) ∈ Aff(DS1 , DS2) : x⃗1 ∈ DS1 is consumed by x⃗2 ∈ DS2 ⇔ x⃗1 = Ax⃗2 + b⃗

}
Otherwise said, an iteration called consumer is dependent on another one, the producer,
if and only if the consumer iteration is the image of the producer iteration by an affine
dependence relation.

Tiling can be applied to D so long as the dependences in B are not violated. Two
kinds of tiling are envisioned:

— Coarse-grain tiling, for node-level parallelism. The choice of tiling hyperplanes and
tile sizes are driven by the available resources on the node, for instance the cache
size of the CPU or the amount of Block RAM available on the FPGA.
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Symbol Description Remarks
S Statement Imperative language statement in the

source program.
DS Statement iteration domain Subset of Zd, also called iteration space for

that statement.
d Iteration space dimensionality Number of surrounding loops for a state-

ment.
e⃗i Basis vector e⃗1, . . . , e⃗d is the canonical basis of D.
D Iteration domain Union of iteration domains of all state-

ments.
x⃗ Iteration An instance of a statement for a specific

valuation of its iterators: x⃗ = (x1, . . . , xd).
In particular, x⃗ ∈ D.

A Variable Symbol used in the source program.
DA Data space of variable A Subset of Zd, where d is the number of di-

mensions of A.
RS Reads of statement S RS : DS → ⋃

A∈Variables DA
WS Writes of statement S WS : DS → ⋃

A∈Variables DA
Aff(D, E) Affine functions D → E Denotes all affine functions from space D to

space E.
ker(A) Null space Set of points which image by A (linear part

of an affine function) is the null vector, 0⃗.
B Dependences Set of dependence relations. Also called de-

pendence polyhedron in the literature.
Q Number of dependences
b⃗ Uniform dependence vector Notation used when a dependence function

is a translation (uniform). Then, b⃗ ∈ B.
B(x⃗) =
Ax⃗ + b⃗

Dependence function Notation used when a dependence function
is affine. Notably, B ∈ B.

H Tiling hyperplane Defined by its standard equation∑d
i=1 aixi = 0.

n⃗ Normal vector Unit vector normal to hyperplane H.
n⃗ Scaled normal vector Vector normal to hyperplane H, that trans-

lates by one tile in the space.
t Number of tiling hyperplanes
t⃗ Tile coordinates t⃗ = (i1, . . . , it).

T (⃗t) Tile Defined by {x⃗ ∈ D : ∀i ∈ [[1; t]] : tisi ⩽
x⃗ · n⃗i < (1 + ti)si}

T Tile space Set of all t⃗s.
T Interior tiles Tiles that have no intersection with the it-

eration space’s boundaries.

Table 3.1 – Notations used throughout this document
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HLS target Polyhedral transformation
Task-level pipeline Coarse-grain loop tiling

Parallel loop iterations Parallel scheduling change of basis
Pipeline initiation interval ADA & scheduling minimizing reuse distance
Memory acccess pattern Data space change of basis

Table 3.2 – Polyhedral transformations needed to obtain a given HLS target

— Fine-grain tiling, for data-level parallelism. The choice of tiling hyperplanes is
driven by the amount of usable parallelism as well as the local memory allocation
and constraints: one wants to maximize the utilized parallelism while avoiding port
contention (on FPGA/ASIC) or excessive register pressure (on ISAs).

Searching for a suitable tile size and shape is an optimization problem. There are
domain-specific solvers, such as PLuTo [8, 11, 12] that computes, via an optimization
problem, tiling hyperplanes that maximize the tile-level parallelism, and minimize the
inter-tile dependences (and therefore the inter-tile communication volume).

3.5.2 From a parallel polyhedral representation to a parallel ar-
chitecture

Once a parallel schedule is obtained from the polyhedral repsentation, we create an
architecture in two steps: polyhedral code generation, and optimizing high-level synthesis
tools.

Manually optimizing an HLS design at the source level is a tedious process; domain-
specific source-to-source compilers [18, 50, 51, 82] automatically optimize existing HLS
designs, e.g. with respect to parallelism and locality. Some of these compilers such as
PolyOpt/HLS [60] and POLSCA [89] are targeted at HLS engines, and use polyhedral
optimization techniques. These involve the same two steps as defined below

Polyhedral code generation

The polyhedral representation of the program contains information on which instances
of which statement must be executed (iteration space), and in which order (schedule).
Assuming the schedule is legal (i.e. the causality conditions are met and there are no
memory conflicts), it is possible to generate a program that describes the iteration space
in the selected schedule and correctly computes the desired result.
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Code generators such as CLooG [3] are used to generate such codes in the form of
loop nests.

There are two technical challenges HLS polyhedral code generation. First, programs
are generated in an imperative, sequential language, making parallelism implicit whereas
a parallel architecture is desired. Second, multiple distinct regions of code need to be
generated when loop tiling is applied: while the accelerator itself executes the interior of
a tile, the schedule of the tiles is managed outside the accelerator and must be separately
generated.

Parallelism is implicitly contained within the schedule, using the following idea: if
two points in the iteration space have the same schedule, then they may be executed in
parallel. Likewise, if an entire subspace of the iteration space has the same schedule, this
entire subspace is parallel.

Polyhedral code generators issue sequential code even for parallel regions of an iteration
space; a sequential loop that describes a parallel subspace is still such that all its iterations
can legally be executed in parallel. Two annotations are needed to pass the parallelism
down to the HLS engine: an unrolling directive, that will expose all iterations of the loop
(the code generator itself may unroll the loop if the HLS engine is not able to do so), and
no-dependence directives to make it explicit to the HLS engine that the loop is indeed
parallel without requiring subsequent analysis from it.

Not all iterations that may be executed in parallel must be scheduled in parallel: one
can specify a cap on the number of parallel execution units to be generated. This number
is set using the unrolling factor.

Optimizing high-level synthesis

Loop tiling naturally yields a “read-execute-writeback” macro-pipeline structure as
illustrated in Figure 3.11: because tiles can be executed atomically, all I/O operations
can happen before and after execution. HLS tools such as Vitis HLS support such macro-
pipelines through manual code annotation, but through a restricted set of conditions of
the pipeline (i.e. absence of cyclic dependency between stages).

In this dissertation, we take advantage of the separation of stages to generate distinct
I/O functions that do not affect the execution stages. We only seek to optimize transfer
times and memory bandwidth usage. Existing tools [14, 60, 66, 71] can already optimize
the execute stage and take advantage of massive operation-level parallelism (thanks to
loop pipelining and unrolling).
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Figure 3.11 – Macro-pipeline structure: read-execute-write. Our contribution focuses on
the read and write stages.

High-level synthesis engines do not use the polyhedral representation, and have a
limited dependence analysis ability. Hints provided at the polyhedral code generation
time can supersede its analysis and are important to enable parallelism.

3.5.3 From a polyhedral representation to a memory access pat-
tern

The core contributions of this Ph.D rely on automatic computation of memory layouts
and access patterns from the program’s polyhedral representation. Implementing these
layouts and access patterns involves generating data structures and access code from the
polyhedral representation. The generated code must match specific patterns to obtain
burst accesses, needed for a high bandwidth utilization.

Data spaces to access code

Data spaces in the polyhedral model are represented as multi-dimensional sets of
integer points. These sets have a natural lexicographic order, given by the coordinates
of the points they contain. Enumerating all points according to that lexicographic order
gives a layout of the data in memory.

That enumeration is performed by the same code generation tools as the iteration
spaces, such as CLooG [3]. I/O functions are generally generated from maps between two
spaces, the on-chip memory and off-chip memory spaces. Such code copies data between
memories where it may have different layouts. For instance, the following code stores a
transposed version of a matrix on chip:
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1 for(int i = 0; i < 200; i++) {
2 for(int j = 0; j < 200; j++) {
3 local_array [i][j] = ext_array [j + OFFSET ][i + OFFSET ];
4 }
5 }

Burst inference

HLS tools can infer burst memory accesses depending on the target interface. In the
case of a shared bus (e.g. AXI, PCIe), which is commonly found for off-chip accesses, a
burst access may occur if the bus supports it and the compiler recognizes access to a series
of consecutive addresses. In burst mode, no cycle is spent stalling for a new value after a
one-shot initialization latency, which yields full utilization of the available bandwidth.

Tools such as Vitis HLS 2022.2 exploit this using with either a call to a HLS-specific
memcpy routine, or through some form or pattern matching in the source code. To obtain
a burst access from a loop nest, generated by a polyhedral code generator, it is usually
sufficient that the code verifies the following:

— The loop bounds are statically known, constant integers,
— The loop counter is incremented by one,
— The memory accesses use the loop counter as an index variable.
Examples of codes from which a burst can be inferred are given in Section 3.3.2.
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Chapter 4

A MULTI-LEVEL CONTIGUOUS DATA

ALLOCATION FOR RECTANGULAR TILES

4.1 Introduction

The performance of accelerators is driven by two main factors: parallelism and memory
accesses. To get the best performance, computations must not be slowed down by memory
accesses; this throughput constraint is even more prevalent on an FPGA accelerator,
where memory transfers and computations happen in parallel, and the slowest of memory
and computations determines the actual throughput. As seen in Chapter 2 and recalled in
Figure 4.1, both temporal locality and spatial locality, i.e. the amount of memory accesses
and the bandwidth utilization must be improved to get the best performance.

Temporal locality is achievable using loop tiling, as seen in Chapter 3. Tiling caters
to both locality (i.e. bounding the resources) and transfer parallelism: because tiles are
atomically executed, it is possible to schedule all transfers before and after the computa-
tions.

To be applicable, tiling often requires a pre-transformation of the iteration space (e.g.
skewing), that makes it legal to apply tiling. A skewing transformation changes the mem-
ory access pattern, at the expense of spatial locality: even rectangular tiles may no longer
have rectangular footprints on the data arrays. However, to fully exploit high-bandwidth-
memories, one needs to transfer large contiguous chunks of memory. We therefore suggest
to create a memory allocation from the tiled version of the program, with the objective
to maximize the data access contiguity.

In this chapter, we create a data allocation from the tiled version of a program, after
any other legality transformations have been applied. We allocate data in a contiguous
manner inside the data produced by each tile, but also across neighboring tiles, thereby
maximizing the utilization of the memory bandwidth.

The contributions of this chapter are:
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Figure 4.1 – The method proposed in this work improves spatial locality, giving access to
higher performance due to fewer memory-induced stalls.

— A memory layout and access pattern with two levels of contiguity for programs
tiled using rectangular tiles,

— A proof-of-concept compiler pass that automatically applies this memory layout,
— An evaluation of the performance of this layout, that shows it can fully utilize the

available bandwidth, while keeping the accelerator area about the same as other
layouts.

This chapter is organized as follows: Section 4.2 describes the context of this work and
existing ways to increase bandwidth utilization; then, Section 4.3 describes the construc-
tion of our burst-friendly off-chip layout. Finally, Section 4.5 provides an evaluation and
comparison with the state of the art.

4.2 Related work

This work is primarily a compiler optimization technique for FPGA accelerators, and
in that sense, it belongs to, and is complemented by, a large variety of automated opti-
mizations. These optimizations target the computation schedule (e.g., to improve tempo-
ral locality), the memory access pattern (e.g., cache conflict elimination, burst extraction
with existing allocations) the architecture (e.g. parallelism extraction, local memory par-
titioning). In this section, we mention some optimizations that need to be applied along
with the global memory access optimization this work proposes, and also cover other
domain-specific memory layout techniques.
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4.2.1 Improving temporal locality

The first optimizations to apply that targets memory utilization improve temporal
locality, and reduce the number of accesses.

Temporal locality increases the arithmetic intensity, by reducing the volume of data
transferred per arithmetic operation. One way to obtain this result is to re-use the data
already locally present on-chip or in a close level of the memory hierarchy. The following
methods increase the arithmetic intensity of a given program.

Modifying the program’s schedule to favor data reuse reduces the need for off-chip
transfers. Loop tiling [41, 79] is the main technique in this aim. The primary target of tiling
was to reduce the cache miss rate of CPUs, that have a cache hierarchy, but the technique
also applies to software-programmable accelerators such as GPUs [36], and thanks to
high-level synthesis tools, it also applies to application-specific hardware accelerators as
well [60].

Sharing on-chip resources to maximize their usage: On hardware accelerators,
fine-tuning of on-chip memory allocation may eliminate off-chip accesses. Memory cells
may be allocated multiple times, shared across tasks that do not interfere [77], increasing
the usefulness of each memory cell, thereby reducing the amount of off-chip traffic.

4.2.2 Increasing the effective bandwidth

The root of the memory bandwidth issue is found in the massive parallelism the
hardware can provide. When it is fully used, the memory latency may be higher than the
compute latency, due to how the memory subsystem is designed and used. In this case,
the design is said to be memory-bound. Such a limitation may be caused, for instance, by
port contention, cache conflict misses, scalar accesses to global memory. All of these issues
find their root in a sub-optimal memory access pattern, a sub-optimal physical placement
(layout) of the data, or both.

Program and data transformations of several kinds can be used to adapt the access
pattern to the data layout, or adapt the data layout itself to the program; proper use of the
memory and its access interfaces result in an increase of the memory bandwidth to a value
closer to the nominal memory chip bandwidth. Further increase of the effective bandwidth,
which is the amount of useful data transferred per unit of time, may be achieved using
data compression techniques.
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Our work is positioned among these techniques, but it is also essential that temporal
locality and on-chip performance optimizations are applied to exhibit sufficient parallelism
and create the demand for bandwidth.

Optimizing memory access pattern and layout

Sub-optimal usage of memory bandwidth causes a drop down in effective bandwidth.
It may be due to where the data is located in memory and the schedule of access requests.
The following methods can increase the effective bandwidth by playing with the data
layout, the access pattern, or both.

Eliminating access conflicts Access conflicts may occur in all memory architecture,
when one wants to use a physical port or memory cell to convey multiple data at the same
time. Mapping the data to other cells or addresses will resolve the conflicts. On FPGA
chips, parallel memory access patterns may incur port contention. Such a phenomenon is
common with on-chip memories, but may happen on multiple-port memory architectures
such as high-bandwidth memory (HBM). Bank partitioning [17] is a key and widely used
technique to bank conflict prevention, and is available in commercial high-level synthesis
tools. Conflicts also happen in set-associative caches when multiple addresses share the
same set and therefore the same physical memory cells in the cache. Appropriate array
padding [37] reduces such conflict misses at the price of an increase in off-chip array size.

Exhibiting burst accesses by re-scheduling memory accesses It may be possible
to exhibit burst accesses by changing the access order of a given set of data addresses.
If communications and computations are not separate [5], then the execution’s schedule
is also the memory access schedule; a loop transformation that maximizes DRAM row
and burst use is found. Such a process changing the loop’s execution order, it may break
temporal locality. When communications and computations are executed separately and
on-chip memories are used as scratchpads [60], the global memory access pattern does not
need to match the on-chip access pattern. In this case, it is possible to improve memory
bandwidth usage while keeping the same on-chip performance.

Re-allocating data in a burst-friendly layout Regardless of the data layout, it is
always possible to make burst accesses to memory, however, the proportion of useful data
accessed by such bursts may be low. It is possible to change the data layout to exhibit a
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Column Major Row Major Data Tiling +
Row Major

Data Tiling +
Column Major

Figure 4.2 – Memory layouts (non-tiled and tiled) for a 2-dimensional data space, and access
patterns for a tile. Each dot is the start of a burst access, that spans until the arrow tip. Data
tiling layouts enable a single burst access per tile instead of one per row/column.

high-usefulness burst access pattern. Data tiling [45] is one such technique; in the specific
case of dense matrix product (GEMM), block matrix layout or data tiling as illustrated
in Figure 4.2 (c) is known to have excellent spatial locality [35]. The dependence pattern
of GEMM is such that the footprint of a tile can exactly fit a data tile, making it ideal
layout for such an application. There is a trade-off between size and shape of data tiles
and the usefulness of the burst accesses they permit, explored in works such as [58].

Increasing effective bandwidth by compressing data

Another class of solutions around the bandwidth issue is using compression, whether
lossy or lossless. Ozturk et al. [58] created a dynamic lossless compression engine that
acts like a cache, where local data is compressed before being sent out to memory, and
decompressed when coming from memory. Compression combines two advantages: it saves
both memory and bandwidth, at the cost of using extra cores or on-chip area to perform
it. A major pitfall of compression combined with data tiling is that it requires to read or
write a full tile even to access a single point from it.

Lossy compression enhances throughput as well, at the price of errors. Maier et al.’s
perforation [54] is a form of lossy compression, as is the well-known JPEG algorithm.
Nakahara et al. [57] use it on CNN inputs; their method is to compress the CNN input on
the host using the lossy JPEG algorithm, decompress it on FPGA chip, and perform the
inference there. As expected, accuracy goes down as the JPEG quality factor decreases,
and there is a trade-off with the obtained speedup.
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Sun et al. [72], tackle the same bandwidth problem as ours by using a mix of compres-
sion and data layout. Although this approach does not rely on polyhedral dependency
analysis, it features the same base idea: group together data that is being used together.

4.2.3 Automatic synthesis of optimized hardware

This work is an automated memory layout optimization for FPGA accelerators, that
needs to be accompanied by more FPGA-specific optimizations. There is a longtime sus-
tained community interest in automating optimization of hardware design, including high-
level polyhedral optimizations (as opposed to low-level RTL tuning). This has resulted in
compilers targeting FPGAs being developed, and we give some of them below.

Early work on polyhedral compilation was already targeting hardware design; Le
Verge, Mauras and Quinton in 1991 [76] were using the Alpha language to automati-
cally derive a systolic VHDL circuit from an Alpha polyhedral specification.

More recent work on HLS tools made it possible to explore tiling options for FPGA
or ASIC accelerators (Pouchet et al., 2013 [60]) on various performance metrics such as
latency, area, power consumption, memory bandwidth. Polyhedral transformations are
done using specific tools, such as Pluto (Bondhugula et al., 2008 [10]) that automatically
identifies tilable loop nests and applies tiling.

The most recent advances in tools bear a focus on data movement and memory issues.
The SODA framework [13] automatically generates a dataflow-like pipeline structure with
FIFO-ordered off-chip accesses; the data is automatically transformed have a specific allo-
cation for this to work. This approach turns the data layout into a specific predetermined
layout, independent of the actual dependence pattern, whereas ours finds a data layout
and an access pattern for each accelerator in function of the dependence pattern.

Xiang et al., 2022 [81] propose an approach that is complementary to ours, with an HLS
code generator that infers the entire data movement and memory allocation, both off-chip
and on-chip. This approach does not rely on fine-grain dependency analysis, and therefore
has to keep the inner layout of each array; however, the location of each array in memory is
carefully chosen so as to minimize the latency and maximize the bandwidth. Our approach
is complementary: we make use of fine-grain dependency analysis to transform the inside
of the arrays.
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4.3 Canonical Facet Allocation

One of the two main contributions of this chapter is a memory allocation technique
based on the polyhedral representation of the program. It is based on the observation
of Deest et al. [24, 25], that when rectangular tiling is applied, the flow-in and flow-out
data is contained in the faces of each tile. Provided the intermediate results of a tile stay
on-chip throughout the entire execution of a tile, it is therefore only necessary to clearly
identify these faces and provide a memory allocation for their data, that can then be made
contiguous.

Our idea is to create such a contiguous memory allocation and add extra contiguity
opportunities, by having faces from neighboring tiles adjacent in memory. This enables
contiguous accesses across faces, hence further contiguity.

In this section, we explain how the data layout and corresponding access functions are
built. Section 4.4 explains the compiler flow and code generation phases to implement the
allocation described here into an accelerator.

4.3.1 Description of the method

To create a Canonical Facet Allocation (CFA), we start from a program tiled with
rectangular tiles. We first need to determine which data to take, and this must include
all of the flow-in data. Using the observation that this data is contained into faces of tiles
adjacent to the one being executed, we create multiple data spaces, one per face, and
create projections that map iteration results to the newly created spaces.

Once the data spaces are created, their layout has to be determined. For CFA, the
chosen layout is contiguity at multiple levels: the data produced by a tile must be written
to bulk, contiguous spaces to preserve its contiguity (intra-tile contiguity), and it must be
possible to make contiguous accesses spanning several regions (inter-tile contiguity).

To meet these two levels of contiguity, two techniques are applied:
— data tiling,
— array dimension permutation.
The next subsections give a more formal view of how the projections (Sec. 4.3.4), the

data tiling scheme (Sec. 4.3.5) are created, and how to pick the array dimensions to be
swapped to enable multi-level contiguity (Sec. 4.3.6).
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Figure 4.3 – An instance of flow-in and flow-out sets. The flow-out set is the union of
thicker versions of the tile faces (facets), while the flow-in set is composed of an union of
either whole or partial facets. Some flow-in sets are adjacent in the iteration space; CFA
reflects this adjacency in memory.

4.3.2 Hypotheses

In this chapter, we make the following assumptions on the programs to be transformed.
Uniform dependences: It is, in general, impossible to guarantee that the flow-in

and flow-out of each tile are bounded. It is however sufficient that all the dependences are
uniform (i.e. they are translations) to have this guarantee. We will therefore make this
hypothesis, and can write the dependences as a set of vectors:

B =
{⃗
bi : i = 1, . . . , Q

}
Also, this hypothesis does not imply that all memory accesses are uniform - this only

applies to accesses to read-write arrays (those that hold intermediate results).
Rectangular tiling: We assume tiles are rectangular in all dimensions; using poly-

hedral tools, it is notably possible to change the iteration space basis so that rectangular
tiling becomes legal. Therefore, before applying CFA, we expect such a pre-processing to
have been done if necessary.

Non-sparse data: It does not make sense to apply CFA on highly sparse data. The
data layout of CFA is dense per construction, so that uniform dependencies yield uniform
memory accesses. Using it with sparse data would lead to a significant amount of avoidable
redundant data transfers. Sparse data should use a sparse representation instead.
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4.3.3 Definitions

We use the following terminology in the next subsections:
Projection: We use a restricted definition of projection, considering only orthogonal

projections. They are used to strip one dimension from a multi-dimensional space. For
instance, the projection pk such that

pk(i0, i1, . . . , ik, . . . , id) = (i0, i1, . . . , ik−1, ik+1, . . . , id)

removes the k-th dimension from an d-dimensional space.
Tile: A tile is an hyperrectangle, subset of the iteration space. Its size is s1 × . . . sd

in general; in the 3-dimensional example of Figure 4.3, tile size is respectively s1, s2, s3

where s1 corresponds to tile size on the i axis, s2 for the j axis and s3 for the k axis. A
tile has coordinates i1, . . . , id along each axis; in the example, these are i1, i2 and i3 along
respectively the i, j and k axes.

Facet: A facet is an hyperrectangular set of iterations that is contained in the flow-out
set of a tile, and that contains at least one face of the tile.

First-level neighbor: A first-level neighbor of a tile is a neighbor that is reached
with a move along a single canonical axis. For instance, t⃗1 = (i1, i2 + 1, i3) is a first-level
neighbor of t⃗ = (i1, i2, i3), but t⃗2 = (i1 + 1, i2 + 1, i3) is not.

Second-level neighbor: A second-level neighbor of a tile is a neighbor such that is
reached with a move along exactly two distinct canonical axes. For instance,
t⃗1 = (i1−1, i2+1, i3) is a second-level neighbor of t⃗ = (i1, i2, i3), but t⃗2 = (i1+1, i2+1, i3+1)
and t⃗3 = (i1 + 1, i2, i3) are not.

k-th level neighbor: By extension of the above two definitions, a k-th level neighbor
of a tile is a neighboring tile that is reached with a move along exactly k canonical axes.

In this chapter, we assume all dimensions have been tiled. We will use the following
notations, as per Table 3.1:

— E ⊂ vect (e⃗1, . . . , e⃗d) : d-dimensional iteration space
— b⃗1, . . . , b⃗p : dependence vectors, such that rectangular tiling is legal (see Section 3.4.3).

We assume all dependence vectors are backwards in all dimensions: ∀i, j : b⃗i ·e⃗j ⩽ 0.
— N1 × · · · × Nd : iteration space size
— t1, . . . , td ∈ N∗ : tile sizes (note t = d because all dimensions are tiled)
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Figure 4.4 – Multi-projection: each facet (see Figure 4.3c) is projected (mapped) to a data
space. Choice of contiguity comes later on.

4.3.4 Multi-projection: contiguity along multiple directions

The first aspect of Canonical Facet Allocation is to determine which data should be
part of facets transmitted across tiles. We show that making multiple projections of an
iteration tile gives all the flow-out data. Moreover, each projection goes to a different data
space, each having its own layout and access pattern. Each layout will then be tailored
for contiguity. This section explains the multiple projections and their rationale.

Rationale

In a tile, not every iteration produces a result that is needed in other tiles. Therefore,
only the result of select iterations, called the flow-out set of a tile, goes to memory.
Visually, in Figure 4.3c, the flow-out set is made out of three “slabs” (facets), each of
which is consumed by different tiles (see Figure 4.3b). Each of the “slabs” is consumed
by the tile it is immediately adjacent to, and partially by other tiles. Therefore, each slab
should be a contiguous piece of memory.

We map iterations to memory using a projection from the iteration space to an ar-
ray with fewer dimensions. To get the best spatial locality, this array should mirror the
neighborhood relations in the iteration space: the values produced by two neighboring
iterations in any direction should also be neighbors in memory. Given that memory is
a one-dimensional space, only one such neighboring direction in the iterations can be
mapped to memory. This is not sufficient to map each “slab” to a contiguous piece of
memory.
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Multi-projection, illustrated in Figure 4.4 separates the “slabs” by cutting the flow-
out set into three (partially overlapping) pieces. Each piece of the cut is mapped to a
distinct array (data space). In Figure 4.4, there is a data space for each of the canonical
hyperplanes (i, j), (i, k) and (j, k), to which iterations are mapped with resp. projections
pk, pj, pi.

There are as many directions of contiguity as projections. Having more directions of
contiguity decreases the number of read transactions, at the expense of a higher storage
redundancy, and a higher writeback time.

Intuitively, with uniform dependences, the flow-in set of each tile is parallel to the
tile’s faces. It therefore makes sense to have one projection per face of the tile.

The next two paragraphs state how each projected data space is created, first with an
example, then in the general case.

Construction example

We start with a visual way to construct the data spaces, from a 3-dimensional iteration
space, using Figure 4.3. The idea to construct the projected data space is:

1. To determine how thick every facet is, and

2. To create a function that maps iteration coordinates to data array coordinates.

In Figure 4.3c, the part of the flow-out parallel to hyperplane (i, j), in light blue, has a
thickness of 2: consumer tiles will need the result of the two uppermost (i, j) planes (k ∈
{3, 4}). The dual way to see it is the flow-in (Figure 4.3b): when moving the dependence
pattern along the bottom plane of a consumer tile, the iterations this plane depends on
(part of which the blue slab below the consumer tile) are located two planes below it.

The idea is to make data spaces that are as thick as the dependence pattern "plunges"
into the neighboring tiles. For each projection, it is the maximum length of every depen-
dence vector along the normal vector to the hyperplane we are projecting on. In the ex-
ample of Figure 4.3, the dependence pattern is in Figure 4.3a. The thickness of data space
for hyperplane (j, k) is the maximum absolute value of the component along the i axis of
every dependence vector. We determine it to be 1: only the rightmost (j, k) plane of iter-
ations is needed, and is mapped to a two-dimensional array (Dtype facet_i[Nj][Nk]).
We name it facet because it will ultimately contain data tiles holding entire facets.
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The mapping from iteration coordinates to array coordinates for this example (see
Figure 4.4) is the following:

Pi(i, j, k) = (j, k)

and its domain is the rightmost face of each tile:

D(Pi) = {(i, j, k) : i ≡ 4 mod 5}

Note that, although we do not do it at this point, the above projection function can
be translated to code. Generating code of this function in its domain would result in a
for loop as in Algorithm 1 that browses the rightmost face of each tile (in this example,
tile size is 5 in each dimension).

Algorithm 1: Loop nest describing a facet
for j = 5i2 to 5i2 + 4 do

for k = 5i3 to 5i3 + 4 do
facet_i[j][k] = iteration_result(4, j, k)

end
end

For hyperplane (i, j), the maximum absolute value of the component along the k axis
of every dependence vector is 2. Therefore, the data space to be created will consist of
the two uppermost (i, j) planes of every tile.

The mapping here is a modulo projection: instead of getting rid of the component
along the k axis, this projection replaces the k axis by k mod 2:

Pk(i, j, k) = (i, j, k mod 2)

Its domain is the two uppermost planes:

D(Pk) = {(i, j, k) : 3 ⩽ k mod 5 ⩽ 4}

General case

Consider, according to Table 3.1, a d-dimensional iteration space D, which is contained
in a vector space having an orthonormal basis (e⃗1, . . . , e⃗d). Consider Q uniform dependence
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vectors b⃗1, . . . , b⃗Q, such that rectangular tiling is legal on all dimensions 1. Let s1, . . . , sd

be the tile sizes.
We notably make the hypothesis that all dependences are shorter than the tile sizes

across all dimensions, i.e |bj| < sj for all j ∈ {1, . . . , d}. We also assume that all depen-
dence vectors are backwards in all dimensions: ∀i, j : b⃗i · e⃗j ⩽ 0, without loss of generality
(up to a change of basis).

Let k ∈ {1, . . . , d}, e⃗k the canonical vector of the k-th dimension. The k-th face is
given by those iterations which k-th coordinate is equal to tk − 1.

In the general case, i.e. for d-dimensional spaces, we determine the thickness of each
facet the same way as above: it is the longest dependence vector along the direction normal
to that face. Assuming dependence vectors b⃗1, . . . , b⃗p, the thickness of facet normal to e⃗k

is given by:
wk = max

q∈{1,...,p}

∣∣∣e⃗k · b⃗q

∣∣∣
A tile of iterations, per Table 3.1, is

T (⃗t = i1, . . . , id) = {x⃗ = (x1, . . . , xd) : ∀q ∈ {1, . . . , d} : iqsq ⩽ xq < (1 + iq)sq}

The k-th facet for tile t⃗ is the set of iterations given by:

Fk (⃗t) =
{
x⃗ = (x1, . . . , xd) ∈ T (⃗t) : (1 + ik)sk − wk ⩽ xk < (1 + ik)sk

}

To map the facet’s iterations to the data spaces, it is then sufficient to take canonical
modulo projections:

Pk(x1, . . . , xd) = (x1, . . . , xk−1, xk mod wk, xk+1, . . . , xd)

We claim that all of the intermediate results needed to execute a tile are contained
within facets. To prove this, we need to prove that all the flow-in data for any given tile is
contained within facets, and likewise, facets contain all of its flow-out data. By definition,
flow-out data for a tile is flow-in data for another tile; therefore, proving the completeness
of the flow-in side also proves the flow-out side.

1. Rectangular tiling is a special case of tiling, where the tiling hyperplanes are such that their normal
vectors are the basis vectors of the space.
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Proposition 1. For any given tile of coordinates t⃗, the flow-in iterations of T (⃗t) are
contained inside facets.

Proof. The iteration-wise flow-in set of a tile is defined as those iterations which result is
used by this tile but are executed in another tile. It can be written as:

φi(T (⃗t)) =
{
y⃗ ∈ D \ T (⃗t) : ∃j ∈ {1, . . . , Q} : y⃗ − b⃗j ∈ T (⃗t)

}
Let y⃗ ∈ φi(T (⃗t)). We will show that y⃗ belongs to at least one facet of the tile it is

contained in.
Let j ∈ {1, . . . , Q} such that y⃗ − b⃗j ∈ T (⃗t). We know that for all k ∈ {1, . . . , t},∣∣∣⃗bj · e⃗k

∣∣∣ ⩽ wk by definition.
Let b⃗j = (bj,1, . . . , bj,d), and likewise y⃗ = (y1, . . . , yd). Given that y⃗ − b⃗j ∈ T (⃗t), we

know that for every q ∈ {1, . . . , d}:

iqsq ⩽ yq − bj,q < (1 + iq)sq

which means:
iqsq + bj,q ⩽ yq < (1 + iq)sq + bj,q

and because bj,q ⩽ 0,
iqsq − |bj,q| ⩽ yq < (1 + iq)sq − |bj,q|

It is impossible that for all q ∈ {1, . . . , t}, iqsq ⩽ yq, otherwise y⃗ ∈ T (⃗t). Therefore, let
q0 be such that iqsq − |bj,q0 | ⩽ yq0 < iq0sq0 .

Given that dependences are shorter than tile sizes along all dimensions, we know that
y⃗ is in an immediately neighboring tile of T (⃗t); let t⃗′ be the coordinates of that tile. We
know that the q0-th coordinate of t⃗′ is iq0 − 1. Therefore:

((iq0 − 1) + 1)sq − |bj,q0| ⩽ yq0 < ((iq0 − 1) + 1)sq0

which means that y⃗ ∈ Fq0(t⃗′), i.e. y⃗ is contained within a facet from tile t⃗′.

4.3.5 Flow-in from first-level neighbors: Full-tile contiguity

We have determined that facets contain all the intermediate results necessary to exe-
cute tiles. Facets with results are transferred to memory once a tile’s execution is complete.
To this effect, we must give an allocation to the data contained within each facet.
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i
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k

Figure 4.5 – First-level neighbor facets that are consumed by the grey tile.

We want that for each tile, every facet (as in Figure 4.5) is mapped to a contiguous
region of memory, to be written with a single burst access. We call this full-tile contiguity,
and use data tiling to obtain it. The idea is to mirror the iteration space tiles on the data
space so that each data tile corresponds to a facet.

This transformation improves both write and read performance: Flow-out facets are
almost entirely used by the tile they are immediately adjacent to (as in Figure 4.5).

We give below an example and the general way to apply data tiling in the projected
data spaces.

Example

We can continue with the example of Figure 4.3. In this example, using Ni, Nj and
Nk as the iteration space size along each axis, we have built data spaces for each facet:

— facet_i[Ni/5][Nj][Nk]
— facet_j[Nj/5][Ni][Nk][2]
— facet_k[Nk/5][Ni][Nj][2]
Hyperplane (j, k) is written to facet_i using the projection pi (plane on the right

of Figure 4.4). We seek to further divide facet_i to make the footprint of each tile a
contiguous block of memory.
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The array facet_i will therefore be split into tiles of size 5 × 5, resulting in the
following array:

facet_i[Ni/5][Nj/5][Nk/5][5][5]

General case

To mirror iteration tiles on the data space, we apply data tiling with the same tile
sizes as the iteration space: the projection normal to e⃗k is therefore tiled with dimensions
(t1, . . . , tk−1, tk+1, . . . , td).

To tile the i-th dimension of an array with size t, we replace the i-th dimension by
two dimensions: the quotient and remainder of the Euclidean division of the original
dimension by t. This operation gives 2(d − 1)-dimensional data spaces from a (d − 1)-
dimensional projection of the iteration space. All the quotient dimensions are moved first,
and the remainder dimensions are moved last. We call the quotient dimensions the outer
dimensions, and the remainder dimensions the inner dimensions.

The following mapping tiles a 3-dimensional data space A with tile sizes (s1, s2, s3):

A[i][j][k] 7→ A′[i/s1][j/s2][k/s3][i%ti][j%tj][k%tk]

This transformation is composed with the projection function of the previous section
to give the actual allocation.

Data tiling only guarantees the entire facet is read or written as a single burst access.
In the flow-in data from second- or third-level neighbors, as in Figure 4.6, we need to read
only a subset of some facets.

To enable cross-tile contiguity in multiple directions, we want adjacent facets from
adjacent tiles in the iteration space to also be adjacent in memory. Section 4.3.6 changes
the layout of the arrays obtained via data tiling to enable this adjacency.

Choice and cost of memory allocation

It is possible to allocate the same memory cells to facets from distinct tiles, at the
condition that the facets do not need to be live simultaneously, i.e. that facet data being
overwritten will no longer be needed.

Allocations considering these write-after-read dependences, such as lattice-based pro-
jection [22], can be used to obtain a legal allocation with a small memory footprint.
However, these do not guarantee the possibility of inter-tile contiguity, because they do
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not necessarily preserve the adjacency of two tiles in the iteration space in the memory
allocation of their facets.

In this work, we prioritize contiguity over memory footprint size. To guarantee the
existence of inter-tile contiguity, we choose to allocate a distinct cell for each facet for
each tile, resulting in a single-assignment allocation. Although this choice is not optimal,
any reduction in memory size performed must keep

The memory cost of this choice is proportional to the size of the iteration space: the
total amount of memory needed, considering tile sizes si and iteration space sizes Ni on
each dimension (i = 1, . . . , t), is the volume of each facet (that can be seen in Figure 4.5)
multiplied by the number of tiles in the iteration space:

S =
t∑

i=1
[wi

t∏
j=1
j ̸=i

si

︸ ︷︷ ︸
volume of

facet i

t∏
j=1

⌈
Ni

si

⌉
︸ ︷︷ ︸

number of tiles in
each dimension

]

4.3.6 Flow-in from second-level neighbors: Inter-tile contiguity

In the general case, part of the flow-in iterations of a tile are located in its second-level
neighbors, such as those as shown in Figure 4.6.

Intuitively, second-level neighbors are neighbors of first-level neighbors. We therefore
seek to have contiguous accesses crossing data tile boundaries, or inter-tile contiguity: we
extend burst accesses reading from a data tile from a first-level neighbor to span into a
second-level neighbor.

This can be obtained by swapping the dimensions of the data arrays. The next para-
graphs explain how.

Example

We take back the example of Figure 4.3, of which the part of the flow-in data in
second-level neighbors is shown in Figure 4.6. The producer iterations are part of two
facets at the same time. We therefore have to:

1. Choose a direction of contiguity for each facet, and

2. Select the right facet to read each extension from.
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Figure 4.6 – Flow-in iterations from second-level neighbors of an iteration tile. CFA places in
memory each data tile containing a slab next to a fully consumed data tile to read both in the
same burst.
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Figure 4.7 – The four possible data layouts for a 2-dimensional array in tiled data layout (inter-
tile + intra-tile layouts), and the number of bursts needed to read a tile and part of the tile
below it. Only one layout allows a single burst spanning both tiles.
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If we call Φi(i1, i2 − 1, i3 − 1) the set coming from tile (i1, i2 − 1, i3 − 1) (purple slab in
Figure 4.6), we notice that this slab is a subset of both the (i, j) and (i, k) hyperplanes,
so we can read it from both facet_j and facet_k arrays.

We choose the direction of contiguity for the data space projected from the (i, k)
hyperplane to be the k axis, and to read the extension Φi(i1, i2 − 1, i3 − 1) from facet_j.
Figure 4.7 shows the four possible layouts for the facet_j: only column-major as a data
tile layout and row-major as an intra-tile layout will allow reading Φi(i1, i2 − 1, i3 − 1)
as a contiguous extension of facet_j from tile (i1, i2 − 1, i3). We swap the dimensions of
the facet_j array to match it. Column-major inter-tile layout means that dimensions are
ordered this way: i3, i1; and row-major intra-tile layout gives the i, k order.

Accessing the facet_j array is therefore done with facet_j[i2][i1][i3][k][i][2].
The result is that the purple and red slabs of Figure 4.3b can be read in a single,

merged burst, from facet_j: they are contiguous along the k axis. The same process can
be repeated with the other facets.

General case

A tiled data space, as in Figure 4.7, has two dimensions corresponding to each canonical
axis (one for tile coordinates, and one for intra-tile coordinates). The direction of inter-tile
contiguity for a facet has to be chosen among those axes that are projected.

For a given projection, to make tiles along the i axis contiguous, then the i1 dimension
(outer dimension on the i axis) is moved as the last of the outer dimensions to be enu-
merated. Cross-tile contiguous reads require the i dimension to be the first of the inner
dimensions to be enumerated.

Once the direction of inter-tile contiguity is picked, those parts of the flow-in sets that
have been made contiguous can be merged to be read in a single burst.

4.3.7 Contiguity of flow-in from third-level neighbors

The subsets of flow-in coming from third-level neighbors, as is the set in Figure 4.8, are
in general not contiguous in memory to data already accessed from first- or second-level
neighbors. Still, this set may be read in a single burst access.

In the specific case of a 3-dimensional iteration space, there is only one flow-in set
from a single third-level neighbor. It has a constant number of points, only a function of
the dependence pattern. We call S3 this subset.
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Figure 4.8 – Flow-in from third-level neighbor (pattern of Figure 4.3. CFA places these four
points contiguously in memory within a data tile (intra-tile contiguity).

For instance, in Figure 4.8, S3 is the subset of iterations coming from tile (i1 − 1, i2 −
1, i3 − 1) with i = 4, j ∈ {3, 4} and k ∈ {3, 4}. This subset needs to be contiguous within
one of the three projected facets.

It is possible to make S3’s data contiguous in memory by changing the order of the inner
dimensions of facet_k (projection of (i, j) planes). Since this facet only contains iterations
with k ∈ {3, 4}, we make S3 contiguous using the order of dimensions i3, i2, i1, i, j, k. Then,
the subset of Figure 4.8 is contiguous within facet_k: for any i, the points (i, 3, 3), (i, 3, 4),
(i, 4, 3) and (i, 4, 4) are consecutive in memory. We can thus fetch them in a single burst.

The final layout of our arrays is therefore:
— facet_i[i1][i3][i2][j][k]
— facet_j[i2][i1][i3][k][i][j % 2]
— facet_k[i3][i2][i1][i][j][k % 2]

4.3.8 Case of k-th level neighbors

Although full, inter and intra-tile contiguity are always possible for first, second and
third-level neighbors in a 3-dimensional space, it may not be in a 4 or higher-dimensional
iteration space: the number of k-th level neighbors of a tile is Cd

k , which is higher than d,
the maximum number of projections (i.e. of directions of contiguity).
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Figure 4.9 – Polyhedral compiler flow including the CFA pass (shown broken into two).

4.4 Implementation

The previous section has introduced how the memory layout we suggest is computed
from the polyhedral representation of a program. To use it in an accelerator, we need to
generate access code that honors this layout.

This section explains a proof-of-concept source-to-source compiler pass, targeting HLS
engines, that applies our layout to inputs and outputs of an FPGA accelerator. This
pass performs two main steps: analyzing dependencies and calculating facets, and then,
transforming the program to use them. The code resulting code is mapped to an FPGA
accelerator using a synthesis tool such as Vitis HLS or Catapult. These steps are explained
in the next subsections.

4.4.1 Overview: compiler pass

The flow of our compiler pass is shown in Figure 4.9: it takes the polyhedral repre-
sentation of a program as input, under the hypotheses stated in the previous section. It
determines what the facets are, under the form of sets of points. It then generates loops
to scan these sets of points contiguously (copy-in / copy-out code), and wraps the tile’s
code with this copy-in and copy-out code. The copy-in/out code accesses global memory
in CFA layout and turns it into the original program’s layout for fast on-chip access.

The following subsections explain the transformations that are applied to the code
and how copy-in/out code is generated.

73



A Multi-level Contiguous Data Allocation for Rectangular Tiles

4.4.2 Determining the facets and their layout

The technique described in Section 4.3 is applied in order to determine the facets and
their layout: given the dependence pattern, the compiler generates the mappings between
iterations and data arrays (memory spaces).

4.4.3 Copy-in/out code generation

Once the layout of flow-in / flow-out data is determined by the mappings from the
CFA pass, we have to generate code that actually transfers this data using burst accesses.
This subsection describes how we proceed.

Selecting flow-in facets

We have proved earlier that the flow-in data of any given tile is contained within facets.
However, it is not necessary to read all facets produced by all neighboring tiles to get the
flow-in data; only those facets adjacent to the tile to be executed need to be read. We
need to refine our reasoning and determine exactly which facets, or subsets of facets, are
indeed adjacent in that sense and need to be read.

The following proposition gives us, for each neighboring tile, the facets it produces
that contain flow-in data for the current tile.

Proposition 2. Let t⃗ = (i1, . . . , id) and t⃗′ = (i′
1, . . . , i′

d) be two neighboring tiles. The
flow-in data of T (⃗t) inside T (t⃗′) is contained into the following intersection of facets:

d⋂
k=1

ik ̸=i′
k

Fk(t⃗′)

Proof. Let t⃗ = (i1, . . . , id), and T (⃗t) be a tile of iterations, and t⃗′ = (i′
1, . . . , i′

d) be one of
its neighbors. Let y⃗ ∈ φi(⃗t) ∩ T (t⃗′) as defined in Section 4.3.3.

Let µ⃗ be the difference between tile coordinates:

µ⃗ = (i1, . . . , id) − (i′
1, . . . , i′

d)

. µ⃗ and y⃗ are constant throughout all the rest of this proof.
Let q ∈ {1, . . . , d} such that µq ̸= 0. We show that y⃗ ∈ Fq(t⃗′). For this, we need to

show:
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— First, that there is a dependence with a non-null q-th component, i.e. j such that
b⃗j · e⃗q ̸= 0

— Then, that there exists a dependence vector with a non-null q-th component such
that translating by its opposite leads outside the tile t⃗′.

For the second purpose, it is stronger to show that y⃗ − b⃗j ∈ T (⃗t), because it shows at the
same time that the q-th facet of T (t⃗′) contributes to the data flowing towards T (⃗t).

Per the reasoning used in Proposition 1, considering that the dependences are shorter
than tile sizes in all dimensions, we get that µq = −1.

Existence of a dependence vector with a non-null q-th component: Assume
that ∀j ∈ {1, . . . , p} , b⃗j · e⃗q = 0. Then, it is impossible that µq ̸= 0. Because µq = −1, we
have

(iq − 1)sq ⩽ yq < iqsq

and therefore if for all j, b⃗j · e⃗q = 0, and yq +bj = yq (i.e. there is no way to move along the
q-th axis). The q-th coordinate of y⃗ makes it be outside T (⃗t). Therefore, it is impossible
that y⃗ + b⃗j ∈ T (⃗t) for any j.

Translation to T (⃗t): Assume that no dependence vector with a non-null q-th com-
ponent translates y⃗ into T (⃗t), i.e. for all j such that b⃗j · e⃗q ̸= 0, y⃗ − b⃗j /∈ T (⃗t).

We show this situation is absurd: since µq = −1, the q-th component of y⃗ causes it to
be outside T (⃗t).

— If there exists no dependence vector with a null q-th component, then it is im-
possible that y⃗ ∈ φi(⃗t) by definition of the flow-in (there must be at least one
dependence vector leading to T (⃗t)), therefore there is a vector with a non-null q-th
component which opposite translates y⃗ into T (⃗t).

— If there exists a dependence vector with a null q-th component, then let k ∈
{1, . . . , Q} such that b⃗k · e⃗q = 0 and y⃗ − b⃗k ∈ T (⃗t). Because µq = −1, we have

yq < iqsq

. The dependence vector b⃗k with a null q-th component will not cause

yq − bk,q ⩾ iqsq

and therefore y⃗ − b⃗k /∈ T (⃗t), which is absurd.
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In all cases, we get that: if µq ̸= 0, then there exists a dependence vector b⃗k with a
non-null q-th component such that y⃗ − b⃗k ∈ T (⃗t), i.e. y⃗ ∈ Fq(t⃗′).

Considering all the non-null µqs, we get that

y⃗ ∈
⋂

q∈{1,...,d}
µq ̸=0

Fq(t⃗′)

Given that ik ̸= i′
k is equivalent to µk ̸= 0, the flow-in of tile T (⃗t) contained within

T (t⃗′) is contained within the intersection of all the k-th facets such that ik ̸= i′
k:

d⋂
k=1

ik ̸=i′
k

Fk(t⃗′)

Making a contiguous flow-in/flow-out access pattern

We need to generate an access pattern that will take out the flow-in data from facets,
and conversely, write the flow-out data into facets. This access pattern is supposed to be
as contiguous as possible, and we expect the longest possible burst accesses.

Flow-out facets are entirely written with one transaction per facet - all the flow-out
data is contained.

The intersection of the actual flow-in set with each facet may not be exactly a rect-
angle, and is perhaps not contiguous inside that facet. For this reason, a rectangular
over-approximation of the set of accessed data is taken, like in Figure 4.10. That superset
may span across facets from multiple iteration tiles - in this case, cross-tile contiguity
ensures that a single transaction can bring all the data on-chip.

Given that a bounding box of a subset is contained in the bounding box of the con-
taining set, doing so incurs less overhead than making a rectangular bounding box of the
whole flow-in data.

Correctness: For flow-out data, due to the choice of using a tile-wise single-assignment
allocation (no two different tiles write in the same memory cells), this over-approximation
poses no correctness issues. For flow-in accesses, we must ensure this over-approximation
doesn’t break correctness (conflicts caused by two iterations sharing the same on-chip cell,
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Figure 4.10 – Taking a rectangular over-approximation of the actual flow-in set incurs redundant
reads. Contiguous data (facets) are in red: an over-approximation may be necessary to preserve
access contiguity.

while one is not part of the flow-in data). Filtering out the unneeded data coming from
the bounding box is therefore necessary by adding a guard to the copy-in code.

Generating Burst-Capable Code

The code to be generated to fetch and write flow-in/flow-out sets has to trigger burst
accesses on its memory controller. We generate synthesizable high-level synthesis (HLS)
code, where bursts are inferred from for loops. The following conditions are sufficient for
a burst to be inferred:

— The number of addresses accessed is explicit (e.g., the trip count of the copy loop
nest is constant),

— If the target array size is known, the memory addresses are contained within its
bounds,

— The addresses accessed are consecutive (e.g., with a pointer increment),
— The copy loop is pipelined with an initiation interval equal to 1.
Using the rectangular over-approximation of facet accesses, we can generate rectangu-

lar loop nests, that are coalesced into a single loop to force the inference of a single burst
instead of a series of shorter bursts, as in Figure 4.11.

The copy code features two address generators, for off-chip and on-chip data. Off-chip
address calculation is straightforward: when accesses are contiguous, one simply needs to
provide the HLS tool with a pointer that starts at the beginning of the memory region to
be accessed, and increment it. On-chip address calculation is performed at each cycle.

The resulting code for each facet is as in Figure 4.11, and is sufficient to get burst
accesses using a commercial HLS tool like Vitis HLS.
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1 copy:
2 float * offChipAddr = & facet_0 [l][n][m][0] + 0;
3 for(int I = 0; I <= 9215; I = I + 1) {
4 # pragma HLS PIPELINE II=1
5 int c6 = I / 96 % 96;
6 int c7 = I % 96;
7 * offChipAddr = A_local [(96*n + c7 + 0) % 128][(96* m + c6) %

128][(96* l + 95) % 128];
8 offChipAddr = offChipAddr + 1;
9 }

Figure 4.11 – Merger of two loops from which a burst access is inferred. On-chip addresses are
random, while off-chip addresses are consecutive.

1 void toplevel (int i, int j, int k, float * facetIJ ,
2 float * facetIK , float * facetJK ) {
3 # pragma HLS INTERFACE m_axi port= facetIJ
4 # pragma HLS INTERFACE m_axi port= facetIK
5 # pragma HLS INTERFACE m_axi port= facetJK
6 # pragma HLS DATAFLOW
7 float buf1[TS*TS];
8 float buf2[TS*TS];
9 read(i, j, k, facetIJ , facetIK , facetJK , buf1);

10 execute (i, j, k, buf1 , buf2);
11 write(i, j, k, buf2 , facetIJ , facetIK , facetJK );
12 }

Figure 4.12 – Top-level function, assuming tile size is TS, local memories are TS2 big and the
iteration space is TS3. Such sizes are typical of iterative stencils.

4.4.4 Generating HLS code

The final step in CFA code generation is to generate a three-step coarse-grain pipeline:
— The first step reads the flow-in data from global memory in CFA allocation, and

turns it into local allocation,
— The second step is tile execution,
— The last step is writeback from the accelerator to global memory.
This is implemented under the form of a function, as in Figure 4.12. Note the DATAFLOW

pragma, which is used by the HLS engine to generate a coarse-grain pipeline where the
three functions read, execute and write are executed in parallel, each function for a
different tile.
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Figure 4.13 – Memory-bound accelerator used for benchmarking: only the read and write engines
are implemented.

4.5 Evaluation

We evaluate the effects of adding CFA allocation to an FPGA accelerator with respect
to two metrics: bandwidth (relative to state-of-the-art allocations, and with respect to the
bus peak bandwidth), and FPGA resource overhead introduced by the address generation
code.

4.5.1 Experimental protocol

Experiments were carried out on a variety of uniform-dependence benchmarks listed
in Table 4.1 2. Iterative stencils update an array in place, and differ by their dependence
pattern and the dimensions of the iteration space.

The platform used is a Xilinx Zynq ZC706 board, including a xc7z045ffg900-2 FPGA.
The test accelerators only comprise read and write parts, the structure being that of Fig-
ure 4.13. Every baseline has been tested by connecting it to a single AXI high-performance
port mapped to DRAM (port HP0); the frequency of every design is 100.00 MHz, the AXI
bus is 64-bit wide, and the data type transferred over the bus is 64-bit double-precision
IEEE floating point numbers.

Baselines

We considered the following baselines for comparison with CFA:

2. Results for jacobi2d9p-gol are omitted from this manuscript; full results are available at
https://arxiv.org/abs/2202.05933
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Dependence pattern Nb of
deps Tile Sizes Equivalent

Application
jacobi2d5p 5 163 → 1283 Laplace equation
jacobi2d9p 9 163 → 1283 3 × 3 convolution

jacobi2d9p-gol 9 163 → 1283 2nd-order finite
difference

gaussian 25 4 × 162 →
4 × 1282 5 × 5 Gaussian Blur

smith-waterman -3seq 7 163 → 1283 Alignment of 3
sequences

Table 4.1 – Benchmarks used for testing CFA. Equivalent applications have the same com-
putational dependence pattern as the benchmark and would show similar performance.

— Original Layout (as done by Bayliss et al. [5]): a best-effort burst access pattern
is determined under the original allocation. This access pattern does not issue any
redundant reads, possibly at the expense of contiguity.

— Bounding Box (as done by Pouchet et al. [60]): a rectangular bounding box
around the flow-in and flow-out data is taken so as to exhibit burst transfers; part
of the bounding box is unused and redundantly transferred.

— Data Tiling (as done by Ozturk et al. [58]): data tiling is applied to the original
arrays, and any tile that is accessed is entirely transferred. The reported value
corresponds to the best performing tile size that is less or equal to the iteration
tile size.

The original layout baseline introduces no transfer redundancy but has the smallest
amount of and the shortest burst transfers. The two other baselines are trade-offs between
burst usefulness and bandwidth use: using a bounding box or data tiling result in using
only long burst accesses at the price of transfer redundancy. Each benchmark is tested
against a variety of tile sizes, with 1:1, 1.5:1 and 2:1 ratios.

4.5.2 Results and discussion

Raw bandwidth

The raw bandwidth shown in Figure 4.14 indicates that the CFA layout and access
pattern can reach close to 100% of the bus’ maximum bandwidth, whereas other baselines
exhibit high redundancy overhead (especially with the bounding box).

The high efficiency of our approach is mainly explained by three points:
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Figure 4.14 – Bandwidth for all baselines, per benchmark. CFA is efficient even for tiles where
one dimension is much smaller than the others. Bounding box is the technique used by Pouchet
et al. [60], Data Tiling is used by Ozturk et al. [58], and the original layout is the best-effort
baseline as in Bayliss et al. [5].
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— The small number of burst transfers per tile (4 in the case of 3-dimensional tiles).
The data tiling approach uses a single burst access per tile, and the original layout
and bounding box approaches issue multiple burst requests.

— The length of these burst transfers: some accesses in CFA are entire facets,
— The ability of Vitis HLS to use burst access overlapping, which hides latency for

long bursts even when they are decomposed into smaller burst accesses.

Effective bandwidth

The effective bandwidth assesses the usefulness of the transferred data: it only counts
the data transferred that is actually useful for the application. Data transferred then
ignored is consuming bus time, thus lowering the effective bandwidth. Figure 4.14 shows
the effective bandwidth with colors, the difference with raw bandwidth being in gray. Two
observations can be made:

— For the considered tile sizes, CFA is able to bring the effective bandwidth close to
100% of the bus bandwidth, which other allocations will not achieve.

— CFA is efficient even with small tile sizes. The gaussian benchmark, tiled with a
small size in time (4) and larger spatial sizes (up to 128 × 128), shows that CFA
exceeds 80% of the bus bandwidth for tile sizes above 4 × 64 × 64.

The high usefulness of CFA (low difference between effective and raw bandwidth) is due
to the choice of projections in CFA, which yields minimal redundancy.

Area cost

We analyze two distinct cost metrics specific to FPGA designs: the computational
resources (Slice and DSP), and the storage resources (Block RAM).

Computational resources The cost of CFA itself in terms of hardware is the
address generators. These are small, as about 95% of the logic area on our
test platform remains available for compute engines.

Regardless of the off-chip and on-chip allocations, the read and write engines take up
a small fraction of the available logic resources. Figure 4.15 aggregates the area occupied
by all baselines other than CFA for all tile sizes we have tried, and positions CFA. It can
be observed that with tile sizes ranging from 163 to 1283, except gaussian which tile sizes
range from 4×162 to 4×1282, designs occupy between 2 and 5% of the total slice area, and
0 to 3% of the total available DSP resources on a XC7Z045 FPGA chip. Canonical Facet
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Allocation does not show a significantly different slice occupancy than other baselines.
CFA requires DSP blocks to compute off-chip base addresses, but we observe that none
of our benchmarks exceeded 40 out of 900 (4%) of the DSP resources.

We observed the worst usage of DSP resources on non-power of two tile sizes; com-
puting the base address of a data tile takes a DSP block for a true integer multiplication.
Additionally, the experiments were carried out without any compute logic on the acceler-
ators; given the small size of the memory access modules, the synthesis tool did not have
to significantly optimize the design for area.

Block RAM usage Using CFA does not change the on-chip allocation, there-
fore using CFA does not significantly increase the BRAM cost of a design.

In an FPGA design, Block RAM resources used for on-chip data storage are shared
between multiple actors. Even when the compute actor is not implemented, the memories
needed to hold all the data on chip in and out of the memory actor must be present.
Therefore, all designs except gaussian occupy up to 95% of the available on-chip Block
RAM, as Figure 4.16 shows. BRAM was, indeed, the factor limiting tile size - the larger
the tile, the more data needs to fit into on-chip memories. The gaussian exception is due
to one of its tile sizes being constant and small.

We can observe in Figure 4.16 that the distributions of on-chip memories using CFA
and the original allocation are the same, with an exception (smith-waterman-3seq). This
is due to the fact that CFA does not change the on-chip allocation, which is defining the
amount of on-chip memory needed. The BRAM overhead for bounding box and data tiling
baselines is mainly due to two facts: for the bounding box baseline, writing a superset of
the tile footprint implies that the values written while not modified have been read and
held on chip.

4.6 Conclusion

Our work provides an answer to the under-utilization of memory bandwidth observed
in many instances where an FPGA or ASIC accelerator is developed. The insufficient
effective memory bandwidth results in stalls, preventing the full exploitation of the on-
chip parallelism. Memory allocation can be the cause of a significant under-utilization of
the available bandwidth, due to the high latency of scalar accesses.
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To overcome such under-utilization of bandwidth, we introduced the Canonical Facet
Allocation, a burst-friendly data layout in memory as well as a compiler pass that trans-
forms code to use it. It enables the use of the full bus bandwidth, for a low logic overhead.

To further increase the benefits of CFA, the machine model we have considered may be
extended to multi-port memory accesses, such as high-bandwidth memory, and distributed
memories. In such architectures, there are multiple data ports; to benefit from all their
bandwidth, one has to find an adequate repartition of data over each memory port to
balance accesses.
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Chapter 5

MAXIMAL ATOMIC IRREDUNDANT SETS:
A USAGE-BASED DATAFLOW

PARTITIONING ALGORITHM

5.1 Introduction

Chapter 4 has introduced a memory allocation that can be applied to rectangular
tiles of a polyhedral program. Thanks to the simplicity of the rectangular shapes, it is
possible to obtain a high degree of contiguity, with a limited amount of redundant reads
and writes.

With more complex tile shapes that are not eligible for the CFA technique, such as
diamond tiles [9], it is desirable to keep redundant accesses as low as possible while keeping
a good utilization of the bandwidth. In this chapter, we seek to have the highest utilization
of bandwidth under the constraint to have no redundancy.

The work in chapter relies on prior polyhedral analysis and locality optimizations seen
in Chapter 3 to have been done. Notably, we use the polyhedral reduced depdendence
graph (PRDG), and loop tiling background seen in Section 3.4.3. We assume tiling has
been applied to all the programs considered, and focus on inter-tile communications.

In this chapter, we derive sets of data that are communicated between tiles of a
polyhedral program, with a strict condition to not allow redundancy, both in terms of
write (no data is written more than once into memory) and read (no unused data is read
from memory).

This chapter brings in the following contributions:
— A method to partition of the flow-in and flow-out of each tile into Maximal Atomic

irRedundant Sets (MARS),
— A calculator implementing this method, and an evaluation of its results on a se-

lection of polyhedral benchmark programs.
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It is organized as follows: Section 5.2 gives a view of other work related to data flow de-
composition; Section 5.3 describes the MARS sets and gives their construction procedure;
Section 5.4 provides examples of constructed sets and analyses them; Section 5.5 gives
possible applications of our work.

5.2 Related Work

The flow-in and flow-out sets have been extensively studied along with a good amount
of breakup scenarios by Datharthri et al. (2013) [23] and Bondhugula (2013) [7]. We
are focusing on one special case along the lines of the work of Datharthri et al., with a
constraint that no point may belong to two communication sets at the same time.

A decomposition of the communicated sets of data may be used for inter-node message
passing in MPI to reduce the amount of traffic. Zhao et al. [90] perform a decomposition
of the data space of stencils into coarse blocks such that fetch and write operations of
each block are contiguous, and blocks are laid out according to the consuming neighbors
so that a series of blocks is retrieved in one contiguous message. A supporting graph
data structure provides the addresses for each of the blocks. This work seeks an optimal
memory layout in terms of number of communications, and does so without the flow-in
and flow-out sets or a polyhedral representation. Our work generalizes the idea using the
polyhedral framework.

5.3 MARS: Maximal Atomic irRedundant Sets

This section presents the Maximal Atomic irRedundant Sets (MARS). It is laid out
as follows: first, we give a definition of MARS and properties that they match. Then, we
introduce an algorithm to construct these sets along with an example.

5.3.1 Notations and hypotheses

To compute the MARS, we need a program with a polyhedral representation, to which
the tiling transformation is legal along given hyperplanes. We restrict ourselves to the case
where the dependences are uniform, and therefore we can consider individual dependence
vectors. The uniformity of the dependence pattern guarantees that, assuming an infinite
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iteration space, all tiles of the same shape feature the same MARS. Tile sizes are assumed
to be constant, but they can be made runtime parameters using the idea from [64].

We also assume that each statement writes to a single memory location. Therefore,
we can interchangeably use an iteration and the value it produces (data).

Additionally, we will use the following notations, per Table 3.1:
— D designates the d-dimensional iteration space.
— There are t tiling hyperplanes, Hi for i ∈ {1, . . . , t}.
— There are Q dependence vectors, b⃗j for j ∈ {1, . . . , Q}. The Polyhedral Reduced

Dependence Graph (PRDG) is the set of all dependence vectors, noted B.
The following additional notations are added for this chapter:

— The non-trivial parts of a set E are all the non-empty subsets of E. It is noted
Pn(E). For instance:

Pn ({1, 2, 3}) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

— The modulo operator is noted a mod b and congruences are noted a ≡ r[b].

5.3.2 Definition

Maximal Atomic irRedundant Sets (MARS) are defined as the maximal sets of itera-
tions that satisfy the following properties:

— Single-producer (SP): Each MARS is produced by a single tile.
— Atomicity (A): If any data from a MARS is consumed by a tile, then all points

within that MARS are also consumed by the same tile.
— Maximality (M): If two iterations within the same tile have exactly the same

consumer tiles, the data they produce belong to the same MARS.
Figure 5.1 shows the need for the maximality property. A trivial decomposition of the

entire flow-out set into singletons would satisfy the (SP) and (A) properties, but is not
what is sought. The maximality property forces the search for a non-trivial solution.

5.3.3 Computation

The all-consumed property stated above is equivalent to saying that all data inside a
MARS is consumed by exactly the same tiles. Therefore, if two distinct tiles consume a
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(a) a (b) b

Figure 5.1 – Sets of iterations for Smith-Waterman matching single-producer, atomicity
properties, but not maximality. Maximality forces the search for a non-trivial solution

i

j

Figure 5.2 – Flow-out set for a skewed tile of a Smith-Waterman kernel. The arrows
correspond to the dependence pattern (PRDG).

MARS M , then given the all-consumed property, both consumer tiles use all of the points
of M .

We propose a construction by breaking up the flow-out set of each tile. There is an
equivalent construction with the flow-in set of each tile, and both constructions lead to
the maximal sets that respect the three (SP), (A) and (M) properties.

Flow-out set

We start by refining the definition of the flow-out set seen in Figure 4.3, and provide
a different construction than [7]. The flow-out set of a tile is defined as all the iterations
which have at least one consumer iteration outside the tile. An example is given in Figure
5.2 for a Smith-Waterman kernel with skewed tiles. Notably, we see that despite the
dependences being all unit or null along each axis, the “thickness” of the flow-out may be
greater than one (in this case, with the diagonal dependence).
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The tile-wise flow-out can be expressed as follows: given a tile T (⃗t),

φO(T (⃗t)) =
{
x⃗ ∈ T (⃗t) : x⃗ + b⃗1 ∈ D\T (⃗t) ∨ · · · ∨ x⃗ + b⃗D ∈ D\T (⃗t)

}
However, this formulation is missing information on the tile the dependence vectors

lead to. We therefore introduce a finer formulation with the individual contribution of each
dependence that traverses a tiling hyperplane, i.e. that crosses tile boundaries. This only
requires knowledge of the PRDG (dependence vectors) alongside the tiling hyperplanes
and the domain, and can be done as in Algorithm 2.

Algorithm 2: Computing the the flow-out set using contributions from each
dependence

Input:

D = iteration space,

B =
{⃗
bi : i = 1, . . . , Q

}
= PRDG,

H = {Hi : i = 1, . . . , t} = tiling hyperplanes
{si : i = 1, . . . , t} = tile sizes

Result: φO (⃗t) = Flow-out set parametrized by tile t⃗
// T (⃗t) is a tile of coordinates t⃗

let T (⃗t) = {x⃗ ∈ D : ∀i ∈ [[1; t]] : tisi ⩽ x⃗ · n⃗i < (1 + ti)si};
for H ∈ H do

n⃗ = (ni)i=1,...,t normal vector to H;
s = tile size for hyperplane H;
for b⃗ ∈ B do

// Flow-out iterations for dependence b⃗ crossing hyperplane H

m = n⃗ · b⃗;
FH,⃗b(⃗t) =
T (⃗t)∩

{
x⃗ = (xi)i=1,...,d ∈ D :

(
−m ⩽

∑d
i=1(nixi) mod s < 0

)
∧ x⃗ + b⃗ ∈ D

}
;

end
end
φO (⃗t) = ⋃

H∈H
⋃

b⃗∈B FH,⃗b;
return φO (⃗t)

Following Algorithm 2, the flow-out of a tile is then the union of the contributions of
all dependences to it:

φO (⃗t) =
⋃

H∈H

⋃
b⃗∈B

FH,⃗b
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Figure 5.3 – Flow-out set of a tile intersected with each consumers tile’s flow-in set. The
breakup we propose, illustrated by scissors, splits iterations that have different consumer
tiles.

MARS partitioning of the flow-out set

We explain how our partitioning scheme is done in this subsection.

Principle The flow-out set can be partitioned into MARS in such a way that, for any
given tile, all iterations it produces in a MARS have the exact same consumer tiles. The
partitioning idea is illustrated in Figure 5.3.

The partitioning is done by computing those subsets of the flow-out for which, given
select tiling hyperplanes, any dependence crosses all these tiling hyperplanes, and no
dependence crosses any other tiling hyperplane.

We browse all possible consumers by applying the above on all combinations of tiling
hyperplanes. As there are T tiling hyperplanes, there are 2T − 1 possible consumer tiles,
and therefore at most 22T −1 − 1 MARS.

Example We can construct the MARS for a Smith-Waterman kernel, which has the
following characteristics:

— Domain: D =


i

j

 : (i, j) ∈ [0, 100]2


— PRDG: B =

b⃗1 =
1

0

 , b⃗2 =
0

1

 , b⃗3 =
1

1

 (Q = 3)

— Tiling hyperplane families:
H = {{H1 : i ≡ 0[4]} , {H2 : j ≡ 0[4]}} (t = 2)

— Normal vectors:

n⃗1 =
1

0

 , n⃗2 =
0

1


92



Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm

— Tile sizes: {4, 4}
We can first notice that dependence b⃗1 does not cross hyperplane H2, and likewise

dependence b⃗2 does not cross hyperplane H1.
As a starting point, we consider those dependences that cross any hyperplane of the

H1 family and none of H2.

To have a dependence cross hyperplane H1, the source iteration x⃗ =
i

j

 must be

such that, if b⃗ =
bi

bj

, then (i mod 4) + bi ⩾ 4 or (i mod 4) + bi < 0. Because all b⃗s only

have positive coordinates, we may just consider the case (i mod 4) + bi ⩾ 4.
From dependence b⃗1, we get i mod 4 ⩾ 3; from dependence b⃗3, we also get i mod 4 ⩾ 3.

Therefore, the set of points such that any dependence crosses H1 is:x⃗ =
i

j

 ∈ D : i mod 4 ⩾ 3


or equivalently x⃗ =

i

j

 ∈ D : i ≡ 3[4]


We compute the subset of these points for which H2 is crossed. The condition to cross

H2 is that, if
i

j

 = (x⃗ + b⃗), then j mod 4 + bj ⩾ 4, which means j mod 4 ⩾ 3 with both

dependences b⃗1 and b⃗2. We therefore get that the points from which H1 is crossed and not
H2 is: x⃗ =

i

j

 ∈ D : i ≡ 3[4] ∧ ¬(j ≡ 3[4])


We can do the same procedure to cross only H2, and both of H1 and H2, which yield

the following sets:
x⃗ =

i

j

 ∈ D : ¬(i ≡ 3[4]) ∧ (j ≡ 3[4])


and x⃗ =

i

j

 ∈ D : i ≡ 3[4] ∧ j ≡ 3[4]


Those sets are the MARS we were looking for, and correspond to those in Figure 5.4.

93



Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm

Figure 5.4 – MARS and their consumers for Smith-Waterman using square tiling.

Algorithm Algorithm 3 gives the computation procedure to construct all MARS for all
tiles.

In this algorithm, crossing a hyperplane is a shortcut for the property used in Algo-
rithm 2. Assume n⃗ = (n1, . . . , nd) is the normal vector to a hyperplane H, s is the tile size
along that hyperplane, b⃗ is a dependence vector, and x⃗ = (x1, . . . , xd) ∈ D. Let m = n⃗ · b⃗

assuming m > 0. Then:

x⃗ + b⃗ crosses H ⇔ −m ⩽
d∑

i=1
(nixi) mod s < 0

From Algorithm 3, we obtain a decomposition of every tile’s flow-out set into MARS.
The MARS constructed via Algorithm 3 hold the properties (A), (SP) and (M):

— Single-producer (SP): MARS hold the (SP) property by virtue of being subsets
of a single tile (which is a parameter).

— Atomicity (A): MARS are computed as those iterations that have exactly the
same consumer tiles: given a set of consumer tiles I ⊂ Pn(T ), those points con-
sumed by all tiles in I are in set A(⃗t), and those points not consumed by any tiles
outside of I are in S (⃗t). Intersecting A(⃗t) and S (⃗t) gives those iterations that have
exactly all tiles of I as consumer tiles.

Because all points in a MARS share exactly the same consumer tiles, and that
input and output are done at the tile level, they have the atomicity property.

— Maximality (M): There is exactly one MARS per set of consumer tiles (I ∈
Pn(T )). If two points in the flow-out have exactly the same consumer tiles (I),
then they belong to the same MARS.
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Algorithm 3: Computing the MARS

Input:

D = iteration space,

B =
{⃗
bi : i = 1, . . . , Q

}
= PRDG,

H = {Hi : i = 1, . . . , t} = tiling hyperplanes
{s1, . . . , st} = tile sizes

Result: M(⃗t) = partition of flow-out into MARS, parametrized by tile
coordinates t⃗

// T (⃗t) is a tile of coordinates t⃗

let T (⃗t) = {x⃗ ∈ D : ∀i ∈ [[1; t]] : tisi ⩽ x⃗ · n⃗i < (1 + ti)si};
M = ∅;
T = Pn (H); /* All neighboring tiles */
for I ∈ Pn (T ) do

E = T \I;
// A: all tiles in I must be reached by ⩾ 1 dependence
for T ∈ I do

N = H\T ; /* Hyperplanes not crossed */
for b⃗ ∈ B do

// PT,⃗b: b⃗ crosses all hyperplanes of T and no others
PT,⃗b(⃗t) =
T (⃗t) ∩

{
x⃗ ∈ D : ∧

H∈T

(
x⃗ + b⃗ crosses H

)
∧ ∧

H∈N ¬
(
x⃗ + b⃗ crosses H

)}
;

end
end
A(⃗t) = ⋂

T ∈I

⋃
b⃗∈B PT,⃗b(⃗t);

// S: no tiles in E may be reached by any dependence
for b⃗ ∈ B do

// T = a tile that must not be a consumer
for T ∈ E do

N = H\T ;
// QT,⃗b: b⃗ must cross a hyperplane outside of T

// (i.e. in N), or not cross all hyperplanes of T

QT,⃗b(⃗t) = T (⃗t) ∩{
x⃗ ∈ D :

[∨
H∈T ¬

(
x⃗ + b⃗ crosses H

)
∨ ∨

H∈N

(
x⃗ + b⃗ crosses H

)]}
;

end
end
S (⃗t) = ⋂

T ∈E

⋂
b⃗∈B QT,⃗b(⃗t);

M (⃗t) = A(⃗t) ∩ S (⃗t) ; /* M (⃗t) is a MARS */
M(⃗t) = M(⃗t) ∪

{
M (⃗t)

}
;

end
return M(⃗t)
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5.3.4 Dual view: flow-in

Equivalently to partitioning the flow-out set into MARS, it is possible to compute the
partitioning of the flow-in set of each tile into MARS. The flow-in set is computed with
the same algorithm as the flow-out, using the opposite of the dependence vectors.

Intersecting the MARS created by Algorithm 3 (not broken up into individual tile-
wise MARS) with the obtained tile-wise flow-in set then gives a breakup into MARS. This
partitioning can be used to figure out which MARS every tile should fetch from other tiles
as an input.

5.4 Implementation and Analysis

It is possible to express all MARS using polyhedral tools (ISL) provided the tile sizes
are constant. However, using the idea from [64], it is possible to use parametric tile sizes
by adding those sizes as additional parameters. We have implemented a MARS procedure
in Python using ISLPy.

5.4.1 MARS procedure implementation

The MARS procedure is available at https://github.com/cferr/mars.git.
To compute the MARS for a given program and tiling hyperplanes, it needs input that

can be computed using publicly available tools:
— The polyhedral representation of a program, to be extracted for instance using

PET [75];
— Dependence vectors, obtained using array dataflow analysis e.g. using iscc;
— Legal tiling hyperplanes, found for instance by calling PLuTo; the standard equa-

tion and the normal vectors to these hyperplanes are to be provided.
The MARS procedure then runs Algorithm 3. A visualization of the MARS is given

with islplot when the iteration space is two- or three-dimensional. For two-dimensional
iteration spaces, the MARS in the entire iteration space can be visualized; for three-
dimensional spaces, a sample tile needs to be provided and the MARS specific to that tile
will be shown.
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5.4.2 Handling multi-statement programs

MARS can only be computed for programs exhibiting uniform dependence patterns. A
transformation of the iteration space yielded by a polyhedral analyzer may be necessary to
obtain such a pattern. This is notably the case with programs where multiple statements
exhibit similar dependences.

For instance, we can consider a double-buffered Jacobi 1D code. It is a stencil com-
putation that has an uniform dependence pattern, similar to that of Figure 3.8. The
implementation of this stencil found in PolyBench/C[61] is as follows:
1 static
2 void kernel_jacobi_1d (int tsteps ,
3 int n,
4 DATA_TYPE POLYBENCH_1D (A,N,n),
5 DATA_TYPE POLYBENCH_1D (B,N,n))
6 {
7 int t, i;
8

9 # pragma scop
10 for (t = 0; t < _PB_TSTEPS ; t++)
11 {
12 for (i = 1; i < _PB_N - 1; i++)
13 S75_2: B[i] = 0.33333 * (A[i -1] + A[i] + A[i + 1]);
14 for (i = 1; i < _PB_N - 1; i++)
15 S77_2: A[i] = 0.33333 * (B[i -1] + B[i] + B[i + 1]);
16 }
17 # pragma endscop
18

19 }

In this code, the computation is done using a double-buffering technique: the same
computation is done in two loops over i, alternating which array gets used for reading
and writing. Each statement S75_2 and S77_2 has its own three-dimensional iteration
space, respectively (t, 0, i) and (t, 1, i), and depends on the other statement’s results. The
dependence between these iteration spaces is not uniform: for instance, to use A[i-1]
or B[i-1], (t, 0, i) depends on (t − 1, 1, i − 1) (the dependence is (−1, 1, −1) and (t, 1, i)
depends on (t, 0, i − 1) (dependence (0, 1, −1)).

It is however possible to get a single two-dimensional iteration space and a uniform
dependence from this program, by interleaving the iteration spaces of the two statements.
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Two bijections are necessary to map these two spaces into a single space. The following
bijections:

T ′
0 : S75_2(t, i) 7→ (2 × t, i) and T ′

1 : S77_2(t, i) 7→ (2 × t + 1, i)

give uniform dependences:

B = {B′
0 : (2t, i) 7→ (2t + 1, i); B′

1 : (2t, i) 7→ (2t + 1, i − 1);

B′
2 : (2t, i) 7→ (2t + 1, i + 1); B′

3 : (2t + 1, i) 7→ (2t + 2, i);

B′
4 : (2t + 1, i) 7→ (2t + 2, i − 1); B′

5 : (2t + 1, i) 7→ (2t + 2, i + 1)}

and it is then possible to combine them into three dependences:

B = {B′′
0 : (t, i) 7→ (t + 1, i); B′′

1 : (t, i) 7→ (t + 1, i − 1); B′′
2 : (t, i) 7→ (t + 1, i + 1); }

These three dependences are uniform and apply over the entire (t, i) domain.
Transformations T ′

0 and T ′
1 change the iteration space in the polyhedral representation.

The domain of memory accesses being the iteration space, we must also compose the
transformations with these functions to obtain memory accesses from the transformed
iteration space. For instance, the two write access functions of this program are:

W := {S75_2(t, i) 7→ B[i] and S77_2(t, i) 7→ A[i]}

We compose them with the inverse of the transformation T ′
0 and T ′

1 to obtain the new
access functions:

W ′ := {(t, i) ∈ {2t : t ∈ [0; _PB_TSTEPS − 1]} × [0; _PB_N − 1] 7→ B[i];

(t, i) ∈ {2t + 1 : t ∈ [0; _PB_TSTEPS − 1]} × [0; _PB_N − 1] 7→ A[i]}

where odd values of t result in a write to A and even values of t result in a write to B.
In the following evaluation, this procedure is applied to the jacobi1d and jacobi2d

benchmarks for them to yield uniform dependences.

5.4.3 Results

We have run the MARS procedure against a series of uniform dependence benchmarks.
This section evaluates the result on the following questions:
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— How many MARS are there per tile?
— What is the dimensionality of the result MARS? In particular, how many singleton

MARS are there?

Evaluated applications

The MARS procedure has been used on the following applications:
— sw: Smith-Waterman dynamic programming algorithm for sequence alignment;
— jacobi-1d: Jacobi 1D stencil;
— canonical-3d: Artificial 3-dimensional example that has a dependence along each

canonical axis;
— gemm: GEMM (BLAS) implementation from PolyBench [61];
— seidel-2d: Seidel 2D stencil implementation from PolyBench;
— jacobi-2d: Jacobi 2D stencil implementation from PolyBench;
The jacobi-2d benchmark is exploited twice, with different tiling schemes: one is

rectangular tiling combined with skewing, the other one is diamond tiling [9]. We will
refer to them respectively as jacobi-2d-r and jacobi-2d-d.

Table 5.1 shows the results obtained by running the MARS computer on the selected
applications, and Figure 5.5 shows the MARS for a single tile of every application.

Table 5.1 gives the number of dimensions of the iteration space, the dependence pat-
tern, tiling hyperplanes, the number of consumer tiles per tile (# Cons. Tiles), the number
of computed MARS (Nb MARS) and the number of singleton MARS (that have a single
point per tile).

For the jacobi-2d-d instance, the tiling hyperplanes are not linearly independent.
There are indeed three possible tile shapes; despite 34 MARS being determined, only 26
appear in the tile shown in Figure 5.5g.

Analysis

Two observations can be made out of the MARS, on their number and the tiles that
consume them. As a general rule, the consumers tiles of a MARS are adjacent to each
other, and the more cutting hyperplanes surrounding a MARS, the fewer dimensions it
has. One notable case is seidel-2d (Figure 5.5e) where a two-dimensional MARS is
surrounded by two one-dimensional ones, close to the t + i and 4t + 2i + j hyperplanes
intersection, and close to the t and 4t + 2i + j intersection.
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Dims Application Dependences Tiling hy-
perplanes

# CT # MARS # Singl.

2 sw (1, 0), (0, 1), (1, 1) i + j, j 3 4 2
2 jacobi-1d (1, −1), (1, 0), (1, 1) t + i, t − i 3 4 2
3 canonical-3d (1, 0, 0), (0, 1, 0),

(0, 0, 1)
i, j, k 3 7 1

3 gemm (0, 1, 0) i, j, k 1 1 0
3 seidel-2d (0, 1, 1), (0, 0, 1),

(1, −1, 1), (0, 1, 0),
(1, 0, 0), (1, −1, 0),
(0, 1, −1),
(1, 0, −1),
(1, −1, −1)

t, t + i,
4t + 2i + j

7 13 2

3 jacobi-2d-r (1, 0, 1), (1, 1, 0),
(1, 0, 0), (1, −1, 0),
(1, 0, −1)

t, t+i, t+j 7 13 4

3 jacobi-2d-d (1, 0, 1), (1, 1, 0),
(1, 0, 0), (1, −1, 0),
(1, 0, −1)

t + i, t + j,
t − i, t − j

15 34 6

Table 5.1 – Results obtained from the MARS procedure. # CT = number of consumer
tiles; # MARS = number of MARS; # Singl. = number of MARS of cardinality 1

Benchmark Min (s) Max (s) Average (s) Std. deviation
canonical-3d 0.150 0.170 0.163 0.007
gemm 0.120 0.130 0.126 0.005
jacobi-1d 0.150 0.180 0.162 0.012
jacobi-2d-d 11.110 12.040 11.547 0.296
jacobi-2d-r 1.130 1.220 1.172 0.031
seidel-2d 2.020 2.250 2.100 0.065
sw 0.130 0.170 0.154 0.014

Table 5.2 – Computation time for MARS over 10 runs
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In 2-dimensional iteration spaces, two tiling hyperplanes are enough to tile all dimen-
sions, in which case there are a maximum of 222−1 − 1 = 7 MARS per tile. Our examples,
sw and jacobi-1d, only exhibit 4 MARS, each MARS being consumed by two adjacent
tiles.

In 3-dimensional iteration spaces, the number of MARS goes up to 34 per tile on
jacobi-2d-d out of a maximum 32767 (due to the 15 consumer tiles).

As one can expect given the size of Pn(Pn(H)), the complexity of the computation is
such that current machines will not find the MARS in a matter of hours if there are 5
or more tiling hyperplanes (i.e. a 232-wide space to enumerate). This is a strong call to
prune the search space. We implemented several optimizations to alleviate this time:

— Figuring out the actual consumer tiles instead of enumerating Pn(Pn(H)). To do
this, we only enumerate Pn(H), and determine for each neighboring tile, it is a
consumer tile (i.e. a dependence leads to it). Let C be the subset of Pn(H) with
the actual consumer tiles.

— Incrementally building the sets of consumer tiles, instead of browsing Pn(C). If
A from Algorithm 3 turns out to be empty, this means that no iteration has the
current set of consumer tiles, so we do not need to check for MARS with additional
consumer tiles.

The resulting run times are shown in Table 5.2; even a three-dimensional benchmark with
four non-linearly independent tiling hyperplanes like jacobi-2d-d takes between 11 and
12 seconds to be computed.

5.5 Applications and Future Directions

MARS can be used in a variety of applications where fine-grain knowledge of the
tile’s flow-in origin and flow-out destination is known. In this chapter, we detail two
applications: compression, and memory allocation.

5.5.1 Memory allocation, Compression

MARS can be used to construct a memory allocation for inter-tile communication,
similarly to what Zhao et al. [90] have done with coarser-grain blocks. The idea is similar:
allocate contiguous blocks of memory for each MARS, and find a suitable layout.

102



Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm

The fact that MARS are not redundant makes them suitable for compression: in
general, decompression of an entire block of data is needed to access part of it. When
using MARS, all the data that is decompressed is actually needed, and therefore there is
no compression-induced redundancy. Such a framework would be similar to works such
as Ozturk et al. [58] with data tiles of different sizes, where each data tile is actually a
MARS.

5.5.2 Error detection

A well-known technique to make systems fault-tolerant is the use of checksums over
data to find out whether errors are present. Techniques such as Algorithm-Based Fault
Tolerance [39] can check the result of computations using an accumulation operator over
a fraction of the iteration space where the result must match some otherwise computed
value. If both checksums do not match, then the results are to be recomputed. MARS
can be used to check the integrity of transmitted data with the same idea: a checksum
transmitted along with each MARS is matched against a real-time checksum. If both do
not match, it may indicate a transmission error, or a storage error if the data is in memory.

5.5.3 A case for merging MARS

In some cases, as it can be observed in Figure 5.5, the irredundancy property yields
singletons, that may cause performance drawbacks, for instance when creating access
functions at the granularity of MARS: such access functions will read or write the exact
access data for each tile, but unless singleton accesses are merged or coalesced with other
accesses, these will incur a bandwidth waste. Coalescing accesses is done in Chapter 6 for
a memory allocation.

Another way to alleviate performance issues is to relax the irredundancy property,
and allow for MARS to be merged. This merge process would yield an intermediate
partitioning between very fine-grain MARS and the entire flow-out, which would be the
result of merging all MARS together; studying the potential benefits of such a merging is
left for future work.

103



Maximal Atomic irRedundant Sets: a Usage-based Dataflow Partitioning Algorithm

5.6 Conclusion

In this chapter, we have introduced an element of program analysis, MARS, to de-
termine sets of data communicated between tiles without redundancy. These sets can be
computed for certain programs with uniform dependence patterns, and their computation
can be automated.

In the next chapter, we will cover an application of MARS to memory allocation
by using their irredundancy. We have identified several other routes from this chapter.
The possible use cases of MARS include error detection and correction: thanks to the
single-producer property, producer tiles to be replayed can be uniquely identified, while
the atomicity and maximality properties yield coarser sets to apply checksum on than
singletons. On the computation side, MARS computed in this chapter are limited to
uniform dependences, yet a number of common applications feature affine dependences for
their inputs (e.g. gemm), or between computations (e.g. optimal string parenthesization).
Supporting affine dependences warrants a further study, which is done in Chapter 7.
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Chapter 6

AN IRREDUNDANT AND COMPRESSED

DATA LAYOUT TO OPTIMIZE BANDWIDTH

UTILIZATION OF FPGA ACCELERATORS

FPGA accelerators may be used to perform computations on arbitrary data types;
their strength is their ability to make custom operators to process data. Working with
these data types can be done at a certain cost with respect to memory accesses, because of
a padding requirement to keep data aligned at certain boundaries. Such alignment causes
redundancy and under-utilization of bandwidth, but is necessary to keep a random access
ability to data.

In Chapter 5, we introduce a decomposition of the flow-in and flow-out of tiles of
polyhedral programs; this decomposition can be used to transfer data irredundantly, in
the sense that we can guarantee a single transfer of each data. However, we must also
ensure that all bits of data transferred are actually useful, which padding data is not.

Random access patterns can be avoided by using certain data layouts and access pat-
terns such as CFA introduced in Chapter 4. Keeping the same idea as CFA of using burst
transfers, we suggest to build a memory allocation that is burst-friendly, and irredundant
in both storage and transfer.

In this chapter, we introduce a data layout such that contiguous access patterns are
possible with as little transfer redundancy as possible, using the MARS sets introduced in
Chapter 5, and notably their atomicity and irredundancy properties. By exploiting both
properties, the data layout we build is contiguous and irredundant, but also a candidate
for compression, leading to high bandwidth utilization and data savings.

This chapter makes the following contributions:
— A memory layout using the MARS from Chapter 5 optimized for a maximum of

coalescing opportunities,
— An automatic compression and packing scheme for the MARS-based layout,
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— An implementation on a selection of FPGA accelerators for polyhedral benchmarks.
It is organized as follows: Section 6.1 gives the motivation of this chapter, and Section 6.2
places this chapter in its scientific context. Section 6.3 explains how the allocation is
constructed by laying out MARS and using data packing. Then, Section 6.4 details our
FPGA-specific implementation of this allocation, and Section 6.5 evaluates and discusses
it.

6.1 Motivation

Leveraging contiguous accesses often comes with a redundancy cost: reading extra
values that are not used later on is sometimes more profitable than breaking a burst
access to avoid these unused inputs. The cost of such a manipulation can be signficant:
considering tiled stencil computations with time skewing (e.g. that from Intel) for stencils,
a bounding box of the results can be used. The higher the tiles (and the reuse), the higher
the volume of unused data.

Using data flow information to extract contiguity can keep the volume of unused data
within controlled bounds, which was shown in Chapter 4. However, this is not sufficient
to achieve data compression: because compressed data has a size a priori unknown, posi-
tioning data in memory and seeking to random positions, as is still necessary with CFA,
is impossible. We therefore need a finer decomposition of the data flow to enable its
compressibility while maintaining its contiguity.

6.1.1 Illustrative example: 1D Jacobi stencil

To illustrate the flow proposed in this chapter, we propose a Jacobi-1D stencil as
running example. This kernel updates a one-dimensional sequence of values, and computes
each point as a weighted average of it and its neighbors:

ct+1,i = 1
3 (ct,i−1 + ct,i + ct,i+1)

A C implementation of this stencil is provided in the PolyBench/C suite as the fol-
lowing code:
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Figure 6.1 – Domain of the Jacobi stencil divided into tiles of size 6×6. Each tile contains
18 (t, i) points corresponding to 18 computations of ct,is.

1 for (t = 0; t < _PB_TSTEPS ; t++) {
2 for (i = 1; i < _PB_N - 1; i++)
3 B[i] = 0.33 * (A[i -1] + A[i] + A[i+1]);
4 for (i = 1; i < _PB_N - 1; i++)
5 A[i] = 0.33 * (B[i -1] + B[i] + B[i+1]);
6 }

This stencil operates over a two-dimensional iteration domain time×space where each
point has a coordinate (t, i). Because such a domain may be arbitrarily large, the whole
dataset may not fit into FPGA on-chip memory, and needs to be optimized before it can
be mapped to the FPGA. This naive implementation of Jacobi-1D cannot fit on-chip for
gigabyte-scale problem sizes, thus requiring tiling for locality. For the sake of simplicity
of the illustration, we have chosen small, diamond-shaped tiles, illustrated in Figure 6.1.

An accelerator for the tiled program processes the domain tile by tile. To execute a tile,
it needs to retrieve intermediate results from previously executed tiles. These intermediate
results are located outside of the accelerator, in off-chip memory, and need to be copied
into on-chip memory.

For this tiling scheme, intermediate results to be retrieved come from the tiles located
below the tile to execute; in Figure 6.2, these tiles are designated as the source of incoming
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Figure 6.2 – Inter-tile communication pattern for the Jacobi stencil: red arrows indicate
data input into the tile shown in the center, and blue arrows indicate data output from
this tile.

arrows into the tile to execute. Likewise, the outgoing arrows show those intermediate
results that will be used by other neighboring tiles. All of these data transfers are the
ones this work seeks to optimize; improvements of the compute engine fall out of the
scope of this dissertation.

6.1.2 Padding, packing and compression

In order to maximize the utilization of bandwidth, every bit of data transmitted must
be useful. However, with domain-specific data types (e.g., custom fixed point), unused bits
must usually be transmitted due to memory alignment requirements. In the following, we
explain how data contiguity can be leveraged to two ways: packing data to reduce the
unused bits transmitted; and compressing data to further save bandwidth.

Data packing

Most memories are byte-addressable and most processor architectures also require
aligned accesses at word boundaries, usually at 32 or 64 bits. Although FPGA accelerators
can operate on arbitrary-precision data types, off-chip data transfers must abide by the
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Figure 6.3 – Data packing and compression reduce storage and transfer redundancy at
the expense of address alignment and, for compression, predictability of addresses.

addressing requirements of the external memory. They therefore need to pad the incoming
and outgoing data: in practice, for a 17-bit access, 32 bits of data will be transferred, 15
bits of them being wasted in padding.

Note that padding is necessary to enable random accesses to data: it provides the
guarantee that a given memory cell contains only the requested data and no manipulation
needs to be done to extract it. Data accessed in a contiguous manner does not need this
guarantee and may overlap multiple adjacent cells, as simple wire manipulations on the
FPGA will give back the original data.

Data packing, as illustrated in Figure 6.3, consists in avoiding padding the data so
that words are adjacent at the bit level in memory. Figure 6.3 shows buffer structure
for unpacked and packed data of 17 bits in 32-bit words. Unpacked data has aligned
addresses, but requires extra storage and transfers unused data; packed data has unaligned
addresses but saves storage and avoids some redundant bits from being transmitted. It
becomes however impossible to randomly seek in a packed stream due to misalignment
without additional data processing, but by definition such random seeks do not happen
with contiguous accesses.

In our approach, we leverage contiguous accesses to (i) avoid the adverse effects of
packing induced misalignment and (ii) to maximize bandwidth utilization by not padding
data.

Runtime data compression

Packing data saves bandwidth by eliminating the padding bits, and is applied indepen-
dently of the data itself. However, further optimisation is possible by exploiting properties
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of the data (e.g., correlation between integers in an array) for compression. When this
technique is applied right before / after off-chip communications, the design benefits from
a reduction of I/O cycles (as the amount of data transferred is reduced) without increase
of the computation subsystem as the latency of the compression module can be hidden
by the pipelining structure

Compression is easy to apply to contiguous streams of data, but is not to data where
indexed or random accesses are necessary. We must exhibit access contiguity, as it is in
general impossible to seek within a compressed block without decompressing more data
than needed. Figure 6.3 shows that the position of data within a compressed block is
unpredictable.

Our approach performs runtime compression and, to maximize its efficiency, creates
data blocks with a contiguous access guarantee to ensure every decompressed piece of
data is used.

In general, the compression algorithm is domain-specific, e.g., ADPCM for voice [21]
or JPEG for images [70]. For FPGA implementations, the choice of the algorithm is also
driven by its throughput: compression and decompression must be able to sustain the in-
put and output throughput not to become the bottleneck. We choose to illustrate the idea
with a simple differential compression algorithm which encodes a sequence w0w1 . . . wn of
N -bit words as follows:

— Encode w0 as is.
— For 1 ⩽ i ⩽ n:

1. Compute ∆ = wi − wi−1,

2. Let L be the number of leading zeroes of ∆ if ∆ ⩾ 0, or leading ones if ∆ < 0,

3. Encode N − L using ⌊1 + log2(N)⌋ bits, followed by the sign bit of ∆,

4. Encode the N − (L + 1) lowest bits of ∆.

This technique is especially effective when the distribution of the transferred data is
not spread, typically on benchmarks based on the computation of the average such as our
Jacobi-1D example from subsection 6.1.1.

6.1.3 Contributions

The goal of this work is to propose a source level compiler optimisation to (i)
reorganize data in memory to enable contiguous burst access and (ii) fur-
ther improve bandwidth utilization through packing and compression. Our
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Figure 6.4 – Compiler flow (contributions of this chapter in green)

optimization pass is meant to be integrated within an HLS polyhedral compilation flow,
as illustrated in Figure 6.4; aiming at sitting between the locality optimization phase
(tiling) and the HLS synthesis stage. In fact, our approach does not replace locality
optimizations, it complements them.

6.2 Related Work

This work comes as part of a global effort to relieve memory-boundness of high-
performance accelerators. In this section, we study other techniques used to relieve the
memory wall, some of which may not apply to compilers due to not being automatable
or breaking program semantics.

6.2.1 Data Compression

Data compression saves bandwidth without requiring to modify the program’s algo-
rithm. It is therefore suitable for many bandwidth-bound problems.

Compression techniques

Data compression in FPGA accelerators is already a necessity for some intrinsically
memory-bound applications such as deep convolutional networks, as no locality optimiza-
tion can bring further bandwidth savings. We here focus on two kinds of compression:
lossless and lossy.

Lossless compression Lossless compression guarantees that the decompressed data is
exactly the same as the data before it was compressed. This property makes it possible to
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do seamless, inline compression and decompression as is done for MARS. This is commonly
performed in deep neural network accelerators [1, 34]

Sparse encoding can be considered a form of lossless compression, and is also com-
monly found in machine learning applications [26, 48]. Sparse data structures often require
indirections, which make them unsuitable for use in polyhedral compiler flows unless the
sparse structure is immutable [38].

Lossy compression It is possible to save more storage and bandwidth by using lossy
compression. Some applications in machine learning can afford a loss of precision without
degrading the quality of the result, e.g. using JPEG-compressed images [57] as inputs.
However, lossy compression alters the data and cannot be automatically inserted by a
compiler unless the user explicitly requests it.

Dynamic data compression

In this work, we automate the compression and decompression of data and it is trans-
parent to the computation engine on FPGA. Other works [58, 67] perform dynamic,
demand-driven compression without prior knowledge of the data to be handled. Thanks
to the static control flow of polyhedral codes, all the data flow is statically known and it
is not necessary to maintain a cache policy.

6.2.2 Memory access optimization

The layout we propose in this work optimizes memory accesses by exhibiting contiguity
using polyhedral analysis. In this section, we go through other polyhedral memory access
optimizations, and explain other non-polyhedral ways it is possible to improve memory
accesses.

Polyhedral-based optimizations

Using the polyhedral model and loop tiling to capture the data flow is the subject of a
number of works, proposing different breakups of the dataflow. Datharthri et al. [23] and
Bondhugula [7] propose decompositions of the inter-tile communications to minimze MPI
communications. This work also seeks to optimize the passing of intermediate results, but
the data allocation is not statically determined like in this work.
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A MARS-like decomposition of the inter-tile data flow into coarse-grain blocks for MPI
has been proposed by Zhao et al. [90]; our work achieves irredundancy which requires a
finer-grain modeling than the one proposed by [90].

Domain-specific optimizations

Memory access optimizations such as a change of data layout or access pattern can
also be specific to each problem. We show here two cases of domain-specific optimizations.

Data blocking Data blocking (or tiling) is memory layout transformation that chunks
multi-dimensional arrays into contiguous blocks. Similar to loop tiling, data blocking
allows to coalesce accesses to entire regions of the input or output data.

Data blocking can be efficient when the memory footprint of one iteration of an accel-
erator corresponds to a data tile. Although it has been used to optimize machine learning
accelerators [73], it may break spatial locality and degrade performance of accesses that
cross tile boundaries.

Data blocking can be combined with loop tiling and polyhedral analysis to coalesce
inter-tile accesses. Ferry et al. [31] seeks to exhibit the largest possible contiguous units
spanning multiple tiles.

Stencil optimization Stencil computations have regular and statically known memory
access patterns. Domain-specific optimizers like SODA [13] derive an optimized FPGA
architecture and memory layout specific to each stencil.

6.3 Memory allocation for FPGA accelerator

This section discusses the memory allocation we propose using the MARS: first, it for-
mulates how to lay out MARS in memory to maximize contiguity of accesses at readback
time; then, it explains how data packing is dealt with using MARS.

6.3.1 Extracting Contiguous Data Blocks

The first step in our method consists in analyzing a program’s behavior with respect to
memory, to determine which data can/should be grouped together as contiguous blocks.
The sought groups of data honor two properties:
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Figure 6.5 – MARS: Groups of points within a tile which data is contiguous in global
memory. In blue, the MARS produced by the center tile (O1 to O4); in red, the MARS
consumed by that same tile (I1 to I7).

— Atomicity: If any data in the group is needed for an instance of the accelerator’s
execution flow (a tile), then the entire group is also needed for the same tile.

— Irredundancy: No data is retrieved or stored more than once into memory through-
out the execution of a single tile.

These groups of data are determined by using the analysis technique from Chapter 5
within a polyhedral compiler. This analysis yields sets of on-chip memory addresses, such
that all the data from these on-chip cells will be allocated a contiguous block of data in
off-chip memory.

Example

Applying the MARS analysis from Chapter 5 to the Jacobi stencil of Section 6.1.1
gives the sets of addresses corresponding to the points illustrated in Figure 6.5:

— For the input of each tile, seven contiguous blocks of data labeled I1 to I7 are to
be taken, across three different producer tiles.

— For the output, each tile will produce four contiguous blocks of data labeled O1 to
O4.
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There is a correspondence between output blocks (MARS) Ox from a tile and input blocks
Iy from other tiles: each Ox corresponds to one Iy in several other tiles.

Without any further information, the result of MARS analysis would make the accel-
erator require seven input and four output burst accesses. This number could potentially
be reduced. If I1, I2 and I3 were adjacent in memory, it would be possible to make a single
access instead of three, and likewise for I5, I6 and I7. The total number of input accesses
would go down to just three.

In order to reduce the number of accesses to the above, we have to show that it
is actually achievable: the blocks I1 through I7 are read by multiple tiles, and coalescing
opportunities for one tile may be incompatible with another tile’s coalescing opportunities.

The next subsection formalizes this example into an optimization problem seeking to
minimize the number of accesses.

6.3.2 Enabling Coalesced Accesses across Contiguous Data Blocks

From the polyhedral analysis of the previous subsection, we have determined sets of
on-chip data to be grouped as contiguous blocks of data, called MARS. How these blocks
are laid out in memory is important for access performance: if multiple MARS happen to
be accessed in a row and they are adjacent in memory, the accesses to these MARS can
be coalesced into a single access and better utilize bandwidth.

This section explains how the “outer layout” of the MARS is determined so as to
maximize the coalescing opportunities.

Properties of the layout

The goal of this work is to minimize the number of I/O cycles, and therefore the data
layout must exhibit contiguity (for both reading and writing). However, that contiguity
must not come at the price of an increase in I/O volume. To model this constraint, we
apply two hypotheses.

Contiguous tile-level allocation We are looking for a layout of MARS in memory, and
know that compression will be applied to them. Due to the size and position of compressed
blocks being unpredictable, it is not feasible to interleave MARS from multiple tiles in
memory. Therefore, we allocate each tile a contiguous block of memory for its
MARS output.
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This allocation has two consequences: the write side can be done entirely contiguously,
and we only have to optimize contiguity at the read side.

Irredundancy of storage Under the previous hypothesis, we want to maximize the
coalescing opportunities between MARS accesses for the read side only. While it is possible
to obtain this contiguity by replicating the MARS in multiple layouts, one per consumer,
doing so would defeat the goal to save I/O cycles. We therefore choose to store each
MARS only once in memory (irredundant storage).

The goal is now to find a single layout for the MARS produced by each tile, that
exhibits as much read-side coalescing opportunities as possible. We obtain it through an
optimization problem that is defined in the next subsections.

Example

In the example of Section 6.3.1, it appeared that the number of burst accesses could
go from 7 to 3. Let us show there actually exists a layout achieving these 3 bursts.

Figure 6.5 shows the correspondence between input and output MARS:
— I1, I2 and I3 come from the southwest tile, corresponding to its O2, O3 and O4

blocks. We would like these three MARS to be contiguous, regardless of which
relative order, to make a single burst.

— I4 comes from the south tile, corresponding to its O2 block.
— I5, I6 and I7 come from the southeast tile, corresponding to its O1, O2 and O3

blocks. We would also like them to be contiguous.
We do not make any hypothesis on the relative location of data from the southwest

tile, the south tile and the southeast tile. This makes it impossible to obtain fewer than
3 burst accesses.

The information we have at this point can be used as the constraints and objective of
an optimization problem: we want to maximize the number of contiguities in the layout
among those desired, under the irredundancy constraint. We provide a solver with the
following problem:

— Maximize the contiguities among the desired ones: make MARS O2, O3 and O4
contiguous in any order, and make MARS O1, O2 and O3 also contiguous in any
order.

— Per the hypothesis of Section 6.3.2, we want a layout of MARS O1, O2, O3 and
O4.
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— There can be no fewer read bursts than 3.
The solver returns the following layout of the output MARS for each tile: O1, O3, O2,

O4.
Looking from the consumers, I1, I2 and I3 (resp. southwest O2, O3 and O4) are con-

tiguous; I5, I6 and I7 (southeast O1, O2 and O3) are also contiguous. We can therefore
coalesce, for each tile, the reads I1, I2 and I3 into a single burst, and I5, I6 and I7 into
another burst, achieving the three sought input bursts.

General case

In this section, we lay out the blocks of data from the MARS analysis to maximize
the coalescing opportunities between them.

With the allocation choice of Sec. 6.3.2, writes are guaranteed to be done without
discontiguity. We therefore lay out the MARS to make the read side as contiguous as
possible. In other words, we need to lay out the MARS in memory so that as many
MARS as possible can be read as a coalesced burst.

We propose to model this problem as an Integer Linear Programming optimization
problem as described in this section. Intuitively, if a pair of MARS is needed by a consumer
tile and the two MARS are next to each other in memory, then a coalesced access for
the two (a “contiguity”) is issued. We therefore seek to maximize the number of such
contiguities.

The solution to this optimization problem, given by the solver is an ordered list of the
MARS produced by each tile, that allows the minimal number of transactions to read all
MARS input of a tile.

The problem is modeled in two cases: first, the case where all tiles have a single shape
and emit the same MARS; and second, the case where multiple tile shapes exist, in which
case, as stated in Chapter 5, each tile shape emits different MARS and multiple layouts
need to be derived.

Encoding data structures for a single tile shape

We need a number of intermediate variables in order to encode the layout problem as
an ILP problem. We are going to use two data structures to encode the layout permutation:
an explicit permutation mapping, and a successor matrix.

Consider M MARS; let each MARS be assigned a number from 0 to M − 1. The
permutation is then represented by:
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— δi,j ∈ {0, 1} for successor variables; δi,j = 1 encodes that MARS i is immediately
before MARS j in memory.

— γi ∈ {0, . . . , M − 1} for the explicit permutation; γi is the position where MARS i

will be in the final layout.
The successor matrix encodes the fact that no MARS can have multiple predecessors

or successors with the following constraints:
— ∀i : δi,i = 0
— ∀i : ∑

j δi,j ⩽ 1 (a MARS can only precede at most a single other one)
— ∀j : ∑

i δi,j ⩽ 1 (a MARS can only follow at most a single other one)
— ∑

i

∑
j δi,j = M − 1 (because there are M MARS, we need exactly M − 1 successor

relations)
The permutation σ is such that σ(i) is the new position of MARS number i. σ is

represented by γis where:
— ∀i : 0 ⩽ γi ⩽ M − 1
— ∀i, j : (γj − γi = 1) ⇔ (δi,j = 1) (link between the permutation and successor

matrix), which is encoded using an indicator function as ∀i, j s.t. j ̸= i : δi,j =
⊮γj−γi=1

— ∀i, j : (i ̸= j) ⇒ |γi − γj| ⩾ 1 using Gurobi’s “absolute value” function.
All these constraints are added to the LP, atop of which additional constraints:
— ∀i, j : δi,j + δj,i ⩽ 1 (only one of MARS i, j can follow the other),
— ∑N−1

i=0 γi = N(N − 1)/2 (the sum of all permutations is the same as the sum of the
N − 1 first integers)

The objective function to maximize is the number of contiguities. It is computed
using the successor function and all pairs of MARS that are consumed per producer tile:

max
∑
P ∈P

M∑
i=1

M∑
j=1
j ̸=i

aP,i,jδi,j

Encoding data structures for multiple tile shapes

For the jacobi2d-d benchmark, we observe multiple tile shapes due to the tiling
hyperplanes not being linearly independent. Each tile will belong to a family of tiles that
have the same shape. We’ll then take for each family, the MARS that come out of the tile
shape this tile family has.
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Each family will produce a different number of MARS and consume MARS from
other families. Families are given by relations Ri that link tile coordinates. For instance,
for jacobi2d-d, there are three such relations:

— R0 : k4 = k1 − k2 + k3 (full tiles),
— R1 : k4 = −1 + k1 − k2 + k3,
— R2 : k4 = 1 + k1 − k2 + k3
For a given family R, let P(R) be the producer tiles this family of tiles is taking

data from. Each family produces M(R) MARS. Each input MARS from a producer tile
P ∈ P(R) is annotated with the relation R(P ) (R(P ) ∈ {R0, R1, R2}).

If R is the set of family relations, then the LP is modified as follows: for each R ∈ R,
we introduce a permutation σR and variables γR, δR that verify the properties of the
above LP definition.

Then, we modify the objective function to maximize the sum of contiguities across all
families:

max
∑

R∈R

∑
P ∈P(R)

M(R)∑
i=1

M(R)∑
j=1
j ̸=i

aP,i,jδ
R(P )
i,j

Further work could consider ponderation based on the relative frequency of tile fam-
ilies. Furthermore, for the jacobi2d-d benchmark, we execute only full tiles of relation
R0 on the FPGA, and so only these will benefit from the layout; other tiles executed on
the host do not take MARS as input.

The layout created in this section honors the irredundancy property of the MARS (see
Section 6.3.1), but does not yet take full advantage of their atomicity: the fact that the
MARS are contiguous blocks of data makes them ideal candidates for data packing and
compression. This is what we perform in the next subsection.

6.3.3 Contiguity-Preserving Block Compression

So far, our approach has given a layout of data in memory enabling coalesced accesses
to contiguous blocks of data produced and consumed by an accelerator. These blocks have
an atomicity property that we can further exploit to save bandwidth, by applying data
packing and compression, as illustrated in Figure 6.6.
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Figure 6.6 – MARS data shown without compression, with compression (inside the MARS)
and with MARS compression and packing. Packing the compressed MARS preserves the
contiguity of coalesced accesses.

Combining compression and packing

Compressed blocks of data must be considered atomic in the sense that no random
accesses into them are possible. This atomicity property is borne by the MARS, as each
MARS data block is entirely used when it is accessed, i.e. there are no partial accesses to
a MARS.

Compressing the MARS reduces the size of the data and therefore saves bandwidth
and storage space; however, it can also break the contiguity brought by the layout of
Section 6.3.2 as illustrated by Figure 6.6. To preserve it, we also apply packing to the
compressed MARS, making them immediately adjacent to each other in memory. Packing
compressed MARS also spares the accelerators from unused reads due to padding.

Need to preserve metadata

As the size of compressed blocks depends on their data, it is impossible to know the
exact size of each access. However, the size of a burst access must be known prior to the
request being issued; additionally, using an estimation of the size or an over-approximation
would result in unused input data or additional requests to fill in missing data.

In order to be able to exactly fetch the right size, it is necessary to keep track of
the size of each compressed MARS. Moreover, the packing of compressed MARS means
that the start of a compressed block may be improperly aligned. It is also therefore
necessary to keep track of the alignment of each MARS for proper decompression. In our
implementation, bookkeeping is done using on-chip markers that are filled in after each
MARS is compressed. Details are in Section 6.4.3.

120



An Irredundant and Compressed Data Layout to Optimize Bandwidth Utilization of FPGA
Accelerators

Packing will cause unused input data to enter; however, its size is bounded to one
aligned word at the beginning and one aligned word at the end of each transaction. This
input redundancy is notably independent of the size of the MARS.

6.4 Implementation and Analysis

In this section, we show how we transform an HLS accelerator description in order to
optimize its off-chip memory accesses for bandwidth utilization.

The off-chip data layout and compression proposed in Section 6.3 can be automatically
implemented around the existing description of a tile in HLS. The result is a sequence of
steps:

— Read MARS layout data and non-MARS input data from off-chip memory into
on-chip FIFOs,

— Decompress the input data into FIFOs,
— Dispatch MARS data into on-chip buffers with an allocation suitable for compu-

tation,
— Perform the computations onto on-chip buffers,
— Collect MARS output data from the on-chip buffers into FIFOs,
— Compress the collected data,
— Write back the results into MARS layout in off-chip memory.
This section explains how this implementation has been done using high-level synthesis

tools: it covers how the polyhedral control flow is simplified for the FPGA accelerator
(Section 6.4.1), how the complex data structures describing the MARS are turned into
two simple decompression/dispatch and collect/compression steps (Section 6.4.2), and
how compression is implemented (Section 6.4.3).

6.4.1 Simplifcation of polyhedral control flow on FPGA

Besides tiling, we have to perform a number of optimizations to get a working accel-
erator with MARS input/output without incurring a significant slowdown or increase in
accelerator’s area.
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Tile shifting

It is desirable to have a simple control flow on the accelerated part of the program. One
such simplification that is made possible by the uniform dependence is to make on-chip
computations independent of the tile’s position in the iteration space.

All iterations within a tile can be decomposed into the sum of two vectors: one vector
A⃗ which goes to one point in the tile (called the tile’s origin), and one vector b⃗ from that
point to the actual iteration, such that the latter does not depend on the tile’s parameters.
Thanks to the uniform dependence pattern, iteration b⃗ has the same dependences as A⃗+ b⃗,
and therefore we can iterate only over the space of a tile defined by the b⃗s, which greatly
simplifies code generation.

Host/FPGA dispatching of tiles

The FPGA accelerator must have a simple control structure to exhibit as much paral-
lelism as possible. Therefore, only full tiles are executed on FPGA. Full tiles also all have
the same volume of I/O, regardless of their position in the iteration space.

Partial tiles, i.e. those that contain space boundaries, are run on the host CPU, using
the original program’s allocation. To permit this, data computed on FPGA is taken back
from MARS into the original program’s memory, and MARS are created back from partial
tiles results. It can be demonstrated that no FPGA tiles need any missing MARS data
from partial tiles, and therefore there is no issue in writing part of the MARS for these
tiles.

The operations performed to execute a partial tile (on the host) are:
— Read MARS from neighboring full tiles that were executed on FPGA, remap their

data to its original location,
— Execute the tile’s iterations using the original allocation,
— Write back MARS by copying data from the original allocation, skipping cells that

would be in MARS yet have no producer iteration.
The control flow necessary for compression would significantly lengthen the execution

of host tiles. Therefore, only tiles which producers and consumers are all executed on
FPGA will use compression.
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6.4.2 From MARS to Collect/Dispatch Functions

Similarly to computations, the control flow of transfers has to be as simple as possible.
This way, the HLS tool can extract the requested burst accesses from the code. However,
MARS have complicated shapes as illustrated in Figure 5.5, and cannot in general be
described as a single, perfect loop nest without guards.

The computations on the tile are independent of the tile’s parameters, therefore the
on-chip memory addresses accessed for different tiles will be the same, and the placement
of MARS will not vary across tiles. We therefore statically compute the position of MARS
data and place it in a ROM.

Read and write operations then happen with a very simple loop nest that takes the
on-chip addresses from that ROM while performing sequential accesses on the external
bus.

The input and output data of each tile is respectively copied into and out of on-chip
buffers before the tile execution takes place and after it has fully completed. This is the
step where the data goes from a contiguous layout to a non-contiguous layout (suitable
for execution) and vice-versa.

Implementing these dispatch and collect steps requires to describe each MARS so that
the data contained in it is placed into, or taken from, the right location in on-chip memory.
Before dispatch and after collect, the data is located into FIFOs in the contiguous layout.

MARS can have arbitrary complex shapes, and cannot in general be described using
simple loops. However, it is possible to fully unroll these loops and obtain a list of on-chip
addresses for each MARS. Such unrolled lists are placed into read-only memories on chip.
Iterating through these ROMs as in Figure 6.7 gives the corresponding addresses. The
size of these ROMs is notably only dependent on the tile size, and not on the problem
size or data type.

6.4.3 Automatic compression

When the data is in the contiguous layout in the form of MARS, it can be seamlessly
compressed and decompressed, and the compressed MARS can be packed to preserve
contiguity. We explain here the compression, packing and decompression steps, along
with how the compression metadata is taken care of.
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1 // MARS Dispatch
2 for(int i=0; i <33; ++i) {
3 // take on -chip address from ROM
4 struct mars_transfert mt = FPGA_MARS_IN_TBL [i];
5 switch (mt.array) {
6 // on -chip random write
7 case MARS_DATA_ENUM ::A: {
8 marsToMem_A (mt.dim0 , mt.dim1);
9 break ;

10 }
11 case MARS_DATA_ENUM ::B: {
12 marsToMem_B (mt.dim0 , mt.dim1);
13 break ;
14 }
15 }
16 }

Figure 6.7 – Structure of the MARS dispatch implementation (off-chip to on-chip layout)

Compressing Data and Packing MARS

The compression step is relatively straightforward: the compression module takes its
input from the collect step FIFO, and generates a compressed stream of data from it.
The layout of the data in this FIFO is not altered by the compression step. Likewise,
the decompression step takes a stream of compressed words and decompresses it into a
FIFO, which is then used by the MARS dispatch step. MARS packing is transparently
implemented by the compression step: because MARS are provided in a contiguous manner
from the collect step, the first word of each MARS will be immediately adjacent to the
last word of the previous MARS in the compressed data stream.

Our compressor, which algorithm is given in Section 6.1.2, is pipelined with an initia-
tion interval of 1 cycle, despite a loop-carried dependence.

The difficult part to implement is decompression: because not all MARS from a given
tile are decompressed, we need to be able to seek at the start of a particular MARS. This
ability is given by metadata described in the next paragraph.

Metadata management

The consequence of MARS compression is that their size is unknown a priori. To
preserve the contiguity of the layout from Section 6.3.2, we must avoid padding the com-
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pressed MARS to preserve alignment, Therefore, the compressed MARS are packed and
immediately adjacent to each other in memory.

To keep track of the position of each MARS, we use a data structure with two pieces
of information: a coarse-grain position indicating how far (in aligned words) to seek, and
a fine-grain position marker that specifies which bit is the first of the said MARS.

Because the length of MARS is known at compile time and constant across tiles, the
position of the markers within the uncompressed stream is also constant. Therefore, like
the MARS descriptions, the positions of markers (i.e. start of each MARS) within the
uncompressed stream are put into a ROM:
1 # define NB_MARKERS 3
2 # define MARKERS {62, 63, 64}

The markers for the compressed stream are maintained within an on-chip cache, which
size is specified at synthesis time via a macro:
1 struct compressed_marker < NB_MARS_POS_BITS , LOG_BUS_WIDTH > markers [

COMPRESSION_METADATA_SIZE ][ NB_MARKERS ];

The allocation within this cache is done from the host: registers are used to specify
whether a tile’s MARS are compressed, whether its dependences are, and where the mark-
ers for its dependences are located. This location depends on the size of the space; for the
Jacobi stencil, the formula is:
1 unsigned compressionMetadataAllocation (
2 int tsteps , int n, int M1 , int M2 , int k1 , int k2) {
3 return (k2) + M2DEC_FORMULA + M2 * ((k1 - 1) & 0x01);
4 }

It should be noted that the markers structure is persistent between runs. It is up-
dated by the MARS write step and used by the MARS read step. This update prevents
the current HLS tools from constructing a macro-pipeline (e.g. using the HLS DATAFLOW
pragma) unless the structure is in a separate module.

6.5 Evaluation

We evaluate our approach with respect to the following questions:
— Compile-time performance: How much time does it take to compute the MARS

layout?
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Benchmark Tile Sizes In MARS Out MARS Read Tr. Write Tr.
jacobi-1d 6 × 6, 64 × 64, 200 × 200 7 4 3 1
jacobi-2d 4 × 5 × 7, 10 × 10 × 10 28 13 10 1
seidel-2d 4 × 10 × 10 33 13 10 1

In MARS = Number of flow-in MARS; Out MARS = Number of flow-out MARS;
Read Tr. = Number of (flow-in) read transactions;

Write Tr. = Number of (flow-out) write transactions

Table 6.1 – Characteristics of the selected benchmarks. The number of bursts per tile
accounts for layout-induced access coalescing and is independent of tile and problem size.

— Design quality: How does using MARS affect the FPGA accelerator’s area con-
sumption?

— Runtime performance: How much I/O cycles do compressed MARS save with
respect to a non-MARS memory layout?

— Applicability: How does the data type, tile size and problem size affect the com-
pression ratio?

6.5.1 Protocol and benchmarks

Benchmarks

We have selected the following applications from the PolyBench/C suite[61]:
— jacobi-1d: Jacobi 1D stencil, as used in the running example;
— jacobi-2d: Two-dimensional version of the Jacobi stencil, exhibiting few and sim-

ple MARS;
— seidel-2d: More complex benchmark exhibiting a higher number of MARS with

more complex shapes.
Layout determination was done using the Gurobi solver (version 10.0.3 build v10.0.3rc0

(linux64)).
The data types used are fixed-point numbers (18 bits, 24 bits, 28 bits) and floating-

point numbers (float, double). We also ran simulations with a 12-bit fixed-point data type
without synthesizing it, Vitis HLS being unable to infer bursts from that data type.

The chosen applications provide a non-MARS data layout in their original code. Be-
cause FPGA developers usually try to seek burst accesses where possible, we have created
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two access patterns on the non-MARS layout to compare against that try to exhibit
bursts:

— A minimal access pattern, fetching and storing the exact I/O footprint of the tile,
letting the HLS tool infer bursts where possible.

— A rectangular bounding box of the accessed data like done in PolyOpt/HLS [60],
which description is simple enough to infer only burst accesses.

Both access patterns are generated using a polyhedral code generator available in ISL
[74].

Hardware platform

We used a Xilinx ZCU104 evaluation board, equipped with a xczu7ev MPSoC. We ran
Pynq 3.0.1 with Linux 5.15 and synthesis was done using the Vitis/Vivado suite version
2022.2.2 All benchmarks, are running at a clock frequency of 187 MHz and communicate
with the off-chip DDR using one non cache-coherent AXI HP port.

Protocol

Each benchmark is run for each data type, each space size and tile size. Part of the
computation is done on the host: incomplete tiles are executed on a single thread on the
Cortex-A53 CPU of the MPSoC. Transfer cycles are measured only for the FPGA tiles
and do not account for the host.

Cycle measurements are gathered using an on-FPGA counter and the area measure-
ments are extracted from Vivado place and route reports.

Table 6.1 shows the characteristics of each benchmark, in terms of number of MARS,
and number of bursts after coalescing optimization of Sec. 6.3.2.

6.5.2 Results and discussion

Runtime performance

Figure 6.8 shows the bandwidth measured outside the accelerator for each data type
and each benchmark; Figure 6.9 shows the effective bandwidth, which accounts for the
compression ratio (counted positively) and the redundancy due to padding (counted neg-
atively).
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Figure 6.8 – Bandwidth utilization as seen from outside the accelerator.
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Figure 6.9 – Effective bandwidth: bandwidth after decompression, minus redundancy.
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It appears that the compressed MARS baseline consistently shows an increase in band-
width utilization, regardless of the benchmark and baseline. There are multiple factors to
explain this increase.

Compression and iteration space dimensionality For the jacobi1d benchmark,
the original one-dimensional allocation already enables the exhibition of burst accesses.
In this case, non-compressed MARS baseline gives little performance increase compared
to the orignal allocation and bounding box. However, using compression increases the
effective bandwidth, even more so with larger tiles: the larger the tile, the more the
padding data transferred. For small tile sizes like 6 × 6, the gains are marginal if any:
the number of compressed elements is too small to exhibit large gains from compression.
This effect is also visible in the jacobi2d stencil with tile size 10 × 10 (Figure 6.9b).
Compression algorithms selected based on the data used could yield a higher effective
bandwidth, yet our benchmarks do not feature real-life data sets.

For the 2d examples that have three-dimensional iteration spaces, using MARS, even
without compression, is already profitable compared to the non-MARS layouts: most of
the gains are due to contiguity more than compression.

Effect of data type On the jacobi-1d benchmark, the choice of a 200 × 200 tile size
shows a more significant benefit in using compressed MARS for fixed-point data types
than floating-point. This is explained with the better compression ratio: when modeling
continuous spaces like those used on the Jacobi stencils, neighboring fixed-point values
will have more higher bits in common than floating-point data where neighboring values
mostly only share the exponent.

Compile-time performance

Table 6.2 shows the time it took for each benchmark to be run through the layout
determination and code generation framework. The compilation process does not take
more than a few seconds to execute for the benchmarks we selected, starting from the
polyhedral representation of the program to the end of HLS code generation. Notably,
the layout determination ILP problem only depends on the number of MARS and is
independent of the tile size.
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Benchmark Tile Size Compile Time (s)
jacobi-1d 6 × 6 0.76
jacobi-1d 64 × 64 0.68
jacobi-1d 200 × 200 1.02
jacobi-2d 4 × 5 × 7 5.57
jacobi-2d 10 × 10 × 10 5.09
seidel-2d 4 × 10 × 10 3.21

Table 6.2 – Layout Computation and Code Generation Time

Design quality

Figure 6.10 shows the total area occupied by our benchmarks, with respect to the
different memory allocation baselines. One tile size per benchmark is considered. Table 6.3
shows a breakdown of the area for the jacobi-2d benchmark with respect to layout/access
pattern (naive, bounding box, MARS), and data type.

MARS introduces extra control logic and extra I/O functions that the other baselines
do not have. It is therefore normal to observe area increases with this baseline. Figure 6.10a
and Figure 6.10a show the LUT and FF utilization of the three considered benchmarks,
varying the data type, for one tile size and one metadata size per benchmark. We observe
that the MARS baseline consistently uses more LUT and FF than the bounding box
baseline; however, this is not the case with respect to the original allocation. For instance,
on the seidel2d benchmark, the original allocation baseline consumes 44% more LUT
than the MARS baseline (34752 vs. 24000). This is explained by a complex control flow:
tiles of that benchmark are skewed, resulting in a complex access pattern and control logic
for the input. As Figure 6.8 shows, this baseline also has the lowest access performance
due to the access pattern’s complexity.

The logic area increases with the data type width. This is illustrated in Figure 6.10a.
This increase is more sensible in jacobi1d where the on-chip arrays are implemented in
logic instead of Block RAM, which effect is also visible in Figure 6.10d.

Regarding the DSP and BRAM utilization, Figure 6.10c and Figure 6.10d show that
the MARS baseline consistently requires more DSP and BRAMs than the two other
baselines. This is expected: the MARS baseline performs all the I/O operations other
baselines also perform, plus compression and on-chip data layout change. To this aim,
FIFOs holding all the MARS data are implemented only on the MARS baseline, and
require extra BRAMs. The extra DSP blocks for MARS baselines come from the address
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Layout Data type LUT FF BRAM DSP
naive 18-bit 10265 11299 5 5
naive 24-bit 10345 11418 6 5
naive 28-bit 10746 11667 6 3
naive float 11359 13073 6 14
naive double 13411 15275 12 23
B-Box 18-bit 8693 10181 2 5
B-Box 24-bit 8980 10572 3 5
B-Box 28-bit 9471 11010 3 3
B-Box float 9190 11246 3 10
B-Box double 11012 13343 6 17
MARS 18-bit 18148 16437 87 42
MARS 24-bit 18589 16666 89 42
MARS 28-bit 19050 16877 89 40
MARS float 19774 18342 89 51
MARS double 27984 21508 102 60

Table 6.3 – Occupied area for jacobi-2d, tile size 10x10x10. MARS versions contain a
scratchpad memory for 11520 compression metadata.

computations that are performed inside the I/O units. Indeed, the size of the space is
passed as a parameter instead of being a constant, thus requiring true multipliers.

Applicability

Figure 6.11 shows the compression rate for each data type and tile size for the jacobi1d
benchmark. Two ratios are shown: the true ratio which accounts only for the bit savings
due to compression, and a ratio with padding that accounts for the savings due to not
padding the data. The ratio with padding is the one our accelerators really benefit from,
because the data is not packed in memory except in compressed MARS form.

Overall, compressing the data for the selected benchmarks is almost always profitable,
possibly largely as the compression ratio goes up to 5.09:1 for 200 × 200 tiles and 18-bit
type.

We can observe that large tiles (64 × 64, 200 × 200) exhibit closer compression ratios
than smaller tiles (6 × 6). This discrepancy can be explained by the compressed chunks
being too small to benefit from the data’s low entropy; for the smallest data type and tile
size, compressing data is even worse than not compressing.
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Figure 6.10 – Area statistics for the three benchmarks. Tile sizes are 200 × 200 for
jacobi1d, 10 × 10 × 10 for jacobi2d and 4 × 10 × 10 for seidel2d.
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Figure 6.11 – Compression ratio vs. data type and tile size for jacobi1d

6.6 Conclusion

In this chapter, we introduce a novel global memory layout for FPGA accelerators that
maximises contiguity of the accessed data under constraint of irredundancy. We evaluate
our approach against access patterns derived from the original layout and show that a
MARS-based partitonning of the data allow a substantial increase of throughput and
decrease of transfer time at the cost of a minimal resource increase.
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Chapter 7

AN IRREDUNDANT DECOMPOSITION OF

DATA FLOW WITH AFFINE DEPENDENCES

7.1 Introduction

In the previous chapters, we have covered data transfer optimizations for polyhedral
programs that have uniform dependences. The scope of these optimizations is limited to
intermediate results produced by these programs, due to uniform dependences. In the
polyhedral model, it is however possible to entirely determine the data movement of the
program, and optimize it in two respects: first, reducing the amount of communication
by exhibiting locality; second, by optimizing the existing communications to reduce their
latency and better utilize the available bandwidth.

In this chapter, we broaden the scope of the analysis of Chapter 5, to also support input
data. Like it is done for intermediate results, input data transfers need to be optimized
for both locality and memory access performance. This is even more important when the
same input data is reused and transferred multiple times to the accelerator over the course
of an entire execution.

Dependences to input variables are rarely uniform, because the data arrays usually
have less dimensions than the domain of computation. The existing dependence-based
partitioning works must therefore be extended to support affine dependences to input
variables, and to propose a re-allocation of these variables.

This chapter seeks to extend the partitioning of Chapter 5 to handle the entire data
flow of the tile and maximize access contiguity. Its contributions are as follows:

— We propose a partitioning scheme, called Affine-MARS, of data spaces and iteration
spaces with a pre-existing tiling,

— We formalize the construction of this partitioning scheme and determine its limi-
tations.
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This chapter is organized as follows: Section 7.2 justifies this work on partitioning
iteration and data spaces; Section 7.3 gives the notions of MARS and the linear alge-
bra concepts used throughout this work; Section 7.4 proposes construction methods for
Affine-MARS according to the dependences; finally, Section 7.5 compares this approach
to existing iteration- and data-space partitioning methods.

7.2 Motivation

The motivation of this work stems from two driving forces: the necessity to exhibit data
access contiguity, and the limitations of existing analyses preventing efficient (coalesced)
memory accesses.

7.2.1 Necessity of spatial locality

To motivate this work, we can consider a matrix multiplication program. At each step
of its computations, it needs input values (ai,k and bk,j), an intermediate result (partial
sum of ci,j) and produces a new result. Previous work has shown that using loop tiling
increases the performance due to improved locality. When tiling is applied, the matrices
are processed in “patches” as illustrated in Figure 7.1.

In this application, multiplying matrices A = (ai,j) and B = (bi,j) is done by computing
all ai,k × bk,j. Loop tiling, for locality, can be applied and gives a division of the space as
in Figure 7.1.

In this example, an entire patch of each input matrix A, B is transferred for the
execution of each tile.

Despite the added locality, the application can still be memory-bound: tiled matrix
product lacks data access contiguity. Barring any data layout manipulations, data is con-
tiguous within a row (for row-major storage) or column (for column-major storage). A
patch of A, B or C is never contiguous because it contains multiple parts of contiguous
rows (or columns). The lack of contiguity therefore induces multiple short burst accesses
to retrieve the entire patch.

Like for intermediate results, it is desirable to increase spatial locality and leverage
contiguity to obtain higher performance on the input variables. Data blocking has been
known to increase the performance of matrix multiplication, especially because data block
correspond exactly to the “footprint” of iteration tiles on the matrix.
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B

FP on B

k j
i

FP on B

Figure 7.1 – Tiled matrix product, and footprint of a tile on the matrices. Each footprint
“patch” is composed of multiple contiguous rows or columns, but none of the patches are
entirely contiguous in memory.

7.2.2 Limitations of existing transformations

Although data tiling is sufficient for matrix multiplication, more complex computa-
tional patterns require a finer data partitioning.

Chapter 5 proposes a breakup of intermediate results of programs with purely uniform
dependence patterns, that enables contiguity. However, such dependence patterns exclude
commonly found affine dependences, such as the broadcast-type dependences of matrix
multiplication, despite there existing a natural breakup like data blocking.

Moreover, automatic data blocking is mostly applied by domain-specific compilers that
have to generate the memory allocation (e.g. Halide [62], AlphaZ [85]). When there exists
a memory allocation and data layout in the input code, compilers follow it unless specific
directives (e.g. the ARRAY_PARTITION directive in FPGA high-level synthesis tools based
on [17]) are given to them. Allowing the compiler to change this allocation would open the
door to better bandwidth utilization. Works on inter-node communication [23, 90] where
memory allocation only exists within the nodes (and not across nodes) can resort to very
specific groupings of data to minimize the communication overhead; it makes sense to
apply this idea likewise to host-to-accelerator communications, despite there existing a
global memory allocation.

In this work, we generalize the principle of data blocking to automatically partition
the data arrays in function of when (in time) they are consumed. This approach can only
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be guaranteed to work with a specific class of programs called polyhedral programs where
the exact data flow is known using static analysis.

In the same approach, we propose a secondary partitioning of the intermediate results;
notably, this generalization coincides with an extension of the scope of Chapter 5 to affine
dependences.

7.3 Background and hypotheses

We propose an automated approach to partitioning the data flow of a program. To
construct it, we rely the polyhedral analysis and transformation framework and elements
of linear algebra that this section introduces.

7.3.1 Polyhedral representation, tiling

To be eligible for affine MARS partitioning, a program (or a section thereof) must
have a polyhedral representation. It may come either from the analysis of an imperative
program (e.g. using PET [75] or Clan [4]) or a domain-specific language. In any case, the
following elements from Table 3.1 are assumed to be available:

— A d-dimensional iteration domain D ⊂ Zd, or a collection of such domains,
— A k-dimensional data domain A,
— A collection (φi)i of access functions φi : D → A, defining the reads and writes at

each instance,
— A polyhedral reduced dependence graph (PRDG), constructed e.g. via array dataflow

analysis [27].
The core elements extracted from the polyhedral representation are the dependences,

that model which data must be available for a computation (any point in D) to take
place. The data flow notably comprises two kinds of dependences we focus about in this
chapter:

— Flow dependences: correspond to passing of intermediate results within the poly-
hedral section of the program,

— Input dependences: correspond to input data going into the program.
Both can be mapped to affine functions corresponding to the following definition:
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Definition 1. A dependence function is any affine function from an iteration domain
D to another domain D′ (iteration or data). In particular, a dependence function is a
single-valued relation (each element of D has a single image).

Each dependence will be noted B, and as an affine function, it is computed as B(x⃗) =
Ax⃗ + b⃗ with A a matrix and b⃗ a vector.

Each domain is a subset of a Euclidean vector space E ⊂ Zd. In particular, every
point x ∈ D is associated to a vector x⃗ ∈ E. Section 7.3.2 gives further elements of linear
algebra used throughout this chapter.

In previous chapters, we were only relying on uniform dependences; in this chapter,
we need a formal definition of an affine dependence, which is provided below.

Definition 2. A dependence B(x⃗) = Ax⃗ + b⃗ is said to be uniform when A is the square
identity matrix. A collection of dependences B1, . . . , Bn are uniformly intersecting if they
all have the same linear part, i.e. the same A matrix.

To create a partitioning of the data spaces, our work relies on an existing partitioning
of the iteration space. Loop tiling [41, 63, 68, 79], as introduced in Chapter 3, creates
such a partitioning. It uses tiling hyperplanes to do so. Each hyperplane is defined by a
normal vector (of unit norm). Tiles are periodically repeated, with a period s called the
tile size. We notably use scaled normal vectors that translate a point from a tile to the
same point in another tile by crossing one tiling hyperplane.

In this work, we assume tiling hyperplanes are linearly independent from each
other. Each tile has (unique) coordinates that are represented by a t-dimensional vector
t⃗ = (i1, . . . , it) where t is the number of tiling hyperplanes. This tile is the set defined by

T (⃗t) =

x⃗ ∈ E :
∧

j∈{1,...,t}
sjij ⩽ x⃗ · n⃗j < sj(1 + ij)


The footprint of a dependence B and a tile T (⃗t) is the image of the tile by the depen-

dence:
B

〈
T (⃗t)

〉
=

{
B(x⃗) : x ∈ T (⃗t)

}

7.3.2 Linear algebra

In this chapter, we use several fundamental results from linear algebra. Below are
reminders of them for the reader’s reference.
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Spaces and bases

Definition 3. Let E be an Euclidean vector space of d dimensions with its scalar product
noted x⃗ · y⃗. Let B = (e⃗1, . . . , e⃗d) be a basis of E. B is called an orthonormal basis of E

when for all i ̸= j, e⃗i · e⃗j = 0 and for all i, e⃗i · e⃗i = 1.

Proposition 3. Any Euclidean space E of d dimensions admits an orthonormal basis.

The proof of Proposition 3 is done by applying the Gram-Schmidt basis orthonormal-
ization to an existing basis.

Definition 4. The vector space of all linear combinations of a number of vectors (e⃗1, . . . , e⃗n)
is noted vect(e⃗1, . . . , e⃗n). Notably, that space has up to n dimensions, and exactly n di-
mensions if all the n vectors are linearly independent.

Definition 5. Two subspaces S1 and S2 of a vector space E are supplementary into E

when their intersection is the null vector 0⃗, and there exists a decomposition of all x⃗ ∈ E

as x⃗1 + x⃗2 with x⃗1 ∈ S1 and x⃗2 ∈ S2. That decomposition is notably unique.

Linear applications

Definition 6. Let A : E → F be a linear application. The subspace K of E such that
∀x⃗ ∈ K, Ax⃗ = 0⃗ is called the null space of A and is noted ker(A).

Definition 7. Let A : E → F be a linear application. The image of E by A is noted
A ⟨E⟩. Likewise, the image of a subspace S ⊂ E by A is noted A ⟨G⟩. The preimage of a
subspace T ⊂ F is noted A−1 ⟨F ⟩.

Proposition 4. If A : E → F is a linear application, E has d dimensions, and ker(A)
is its null space, then let k ⩽ d be the dimensionality of ker(A). There exists a d − k-
dimensional supplementary I of ker(A) in E, such that:

∀x⃗ ∈ I, (Ax⃗ = 0⃗ ⇒ x⃗ = 0⃗)

7.4 Partitioning Data and Iteration Spaces

This section constitutes the core of our work: it proposes a breakup of the iteration
and data spaces based on the same properties as the existing uniform breakup, detailed
in Section 7.4.1.
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The reasoning leading to the MARS starts from a simple, restrictive case (one sin-
gle dependence, Section 7.4.3) and progressively relaxes its hypotheses (multiple uni-
formly intersecting dependences, Section 7.4.4 and non-uniformly intersecting depen-
dences, Section 7.4.5). The last step of the reasoning in Section 7.4.6 adds the constraint
of partitioning an existing tiled space, which allows to partition intermediate results.

7.4.1 Case of uniform dependences

Maximal Atomic irRedundant Sets (MARS) are introduced in Chapter 5. They are
defined as a partition of the flow-out iterations of a tile, such that every element of the
partition is the largest set of iterations that verifies:

— Atomicity: consumption of a single element from a MARS implies consumption of
the entire MARS.

— Maximality: considering all the consumers of a MARS M0 (C0) and all the con-
sumers of another MARS M1 (C1), if C0 = C1, then M0 = M1.

— Irredundancy: each element of the MARS space belongs to no more than a single
MARS.

While Chapter 5 uses the flow-in and flow-out information in the sense of [7], input
data and output data do not belong to this information. This work instead resorts on the
notion of footprint from [2]; notably, the notion of flow-in iterations of a tile coincides
with that of a footprint of a tile (of iterations) on another tile of iterations.

The properties of MARS constructed with uniform dependences are the same as those
sought in this chapter. Merely proposing a partition of the iteration or data spaces satisfies
the irredundancy property; the properties to actually check from the partitioning are the
atomicity and maximality.

7.4.2 The problem: uniform versus affine dependences

In the uniform case, MARS can be constructed by enumerating all the consumer tiles of
a given tile, i.e. those other tiles that need data from that tile. The uniformity guarantees
that there are a finite number of consumer tiles, and that all tiles will exhibit the same
MARS regardless of their position in the iteration space (i.e. MARS are invariant by
translation of a tile).
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Affine dependences do not guarantee a finite number of consumer tiles; it may be para-
metric or potentially unbounded. Also, it becomes necessary to assert when the invariance
by translation is possible.

In the rest of this section, we will prove, for one and multiple dependences:
— The existence of a finite set of representatives of all consumer tiles, suit-

able to determine the MARS partition,
— The invariance of the partitioning by a translation of a tile, or conditions to

guarantee it.

7.4.3 Case of a single affine dependence

The simplest case is when there is a single affine dependence between a tiled iteration
space and a data space. This subsection starts with an example and explains the general
case afterwards.

Example

To start with, we introduce an example with a single dependence, and non-canonical
tiling hyperplanes.

— Domain: {(i, j) : 0 ⩽ i < N, 0 ⩽ j < M}, basis vectors e⃗i, e⃗j

— Dependence : S0(i, j) 7→ A(i), represented as B(i, j) = (i) (i.e. B(x⃗) = Ax⃗+ b⃗ with
A : (i, j) 7→ (i) and b⃗ = 0⃗).

— Tiling hyperplanes : H0 : i + j, H1 : j − i

— Normal vectors: n⃗1 = (1, 1), n⃗2 = (−1, 1); scaled normal vectors (w.r.t. tile size):
n⃗1 = (s/2, s/2), n⃗2 = (−s/2, s/2)

— Tile size : s ∈ N∗

We want to construct the MARS on the A data space. To do so, we are going to
compute the footprint [2] of a tile onto the data space along the dependence B; then,
by noticing that all footprints are a translation of the same footprint, we will determine
parametrically which tiles have intersecting footprints, and compute the MARS using the
same method as Chapter 5.

We first define a tile of iterations with a parametric set : we call T (i0, i1) the set :

T (i0, i1) = {(i, j) : si0 ⩽ i + j < s(1 + i0) ∧ si1 ⩽ j − i < s(1 + i1)}
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Figure 7.2 – Footprint of one tile with a single affine dependence B(i, j) = (i). The one-
dimensional destination space is shown as a continuous line.

The footprint of T (i0, i1) by the dependence B, appearing in Figure 7.2, is therefore:

B ⟨T (i0, i1)⟩ = {(i) : ∃j : si0 ⩽ i + j < s(1 + i0) ∧ si1 ⩽ j − i < s(1 + i1)}

where the existential quantifier may be removed:

B ⟨T (i0, i1)⟩ = {(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1 + 1)}

Given (i0, i1), we now seek the other tiles which footprint’s intersection with B ⟨T (i0, i1)⟩
is not empty: let (i2, i3) be another tile.

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i2, i3)⟩ =

{(i) : s(i0 − i1 − 1) + 1 ⩽ 2i ⩽ s(i0 − i1 + 1) − 1

∧s(i2 − i3 − 1) + 1 ⩽ 2i ⩽ s(i2 − i3 + 1) − 1}

The intervals [[s(i0 − i1 − 1) + 1; s(i0 − i1 + 1) − 1]] and
[[s(i2 − i3 − 1) + 1; s(i2 − i3 + 1) − 1]] intersect if i0 − i1 = i2 − i3 + 1, i0 − i1 = i2 − i3 or
i0 − i1 = i2 − i3 − 1.
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W(t'-t)

t'-t ∈ ker(A)
t'-t t'-t

W(t'-t)

Figure 7.3 – Some consumer tiles of one tile T (⃗t) with a single dependence B(i, j) = (i),
and the projection W (t⃗′ − t⃗) on a supplementary of ker(A). There are a finite number of
such projected vectors, and they are constant.

The valid (i2, i3)s are therefore:

(i2, i3) ∈ {(i0 + p, i1 + p); p ∈ Z}

∪ {(i0 + p − 1, i1 + p); p ∈ Z}

∪ {(i0 + p + 1, i1 + p); p ∈ Z}

as shown in blue in Figure 7.3.
The space of valid (i2, i3) is infinite: we can visually see this as all tiles along a vertical

axis share the same footprint on A. We can formalize this intuition by computing the
kernel of A : in this case, it is

ker(A) = vect(e⃗j)

and the image of a point on A is invariant by any upwards or downwards translation.
There are however only three distinct footprints intersecting with that of T (i0, i1);

the other footprints stem from tiles which are translations along ker(A). These footprints
come from the top-left, top-right tiles and all tiles above them vertically; these consumer
tiles are shown in Figure 7.3.
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We can decompose the space (i, j) using a basis of the kernel and a supplementary,
for instance E = vect(e⃗i) ⊕ ker(A).

In this basis, we can express the coordinates of tile’s origins for the case where (i2, i3) =
(i0 + p + 1, i1 + p) with p ∈ Z using the scaled normal vectors n⃗1, n⃗2:

i2n⃗1 + i3n⃗2 = i2
s

2(e⃗i + e⃗j) + i3
s

2(e⃗j − e⃗i)

= s

2(i0 + p + 1)(e⃗i + e⃗j) + s

2(i1 + p)(e⃗j − e⃗i)

= s

2(i0 − i1 + 1)e⃗i + s

2(i0 + i1 + 2p + 1)e⃗j

which, when projected onto vect(e⃗i), gives:

Pvect(e⃗i)(i2n⃗1 + i3n⃗2) = s

2(i0 − i1 + 1)e⃗i

which is independent of p. This means that all points within tile T (i2, i3) have the same
image by B. Therefore, given (i0, i1), the entire family of tiles (i0 + p + 1, i1 + p)
have the same footprint on A. We can therefore consider a single representative of
that family to compute the MARS.

Likewise, if (i2, i3) = (i0 + p − 1, i1 + p) with p ∈ Z, then

Pvect(e⃗i)(i2n⃗1 + i3n⃗2) = s

2(i0 − i1 − 1)e⃗i

which is also independent of p; the same conclusion holds for (i2, i3) = (i0 + p, i1 + p) and
Pvect(e⃗i)(i2n⃗1 + i3n⃗2) = 0⃗. Figure 7.3 shows in pink the projection of the translation vectors
from the tile T (⃗t) to its consumers (there are only two non-null projections, so only two
such vectors appear).

There are an infinity of tiles which footprint intersects with that of a given tile; how-
ever, to compute the MARS, we have demonstrated that it is sufficient to take three
representative tiles. The same procedure as in Chapter 5 can be applied once these three
consumer tiles have been determined.
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Per Algorithm 3, we compute the respective intersections with B ⟨T (i0, i1)⟩ of all other
consumer tiles: for (i2, i3) = (i0 + p + 1, i1 + p) with p ∈ Z,

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i0 + p + 1, i1 + p)⟩ =

{(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1 + 1)

∧s(i0 − i1) < 2i < s(i0 − i1 + 2)}

= {(i) : s(i0 − i1) < 2i < s(i0 − i1 + 1)}

When (i2, i3) = (i0 + p − 1, i1 + p) with p ∈ Z,

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i0 + p − 1, i1 + p)⟩ =

= {(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1)}

Finally, when (i2, i3) = (i0 + p, i1 + p),

B ⟨T (i0, i1)⟩ ∩ B ⟨T (i0 + p, i1 + p)⟩ =

= {(i) : s(i0 − i1) = 2i}

Also, B ⟨T (i0 + p + 1, i1 + p)⟩ ∩ B ⟨T (i0 + p − 1, i1 + p)⟩ = ∅, so we have all the
MARS.

The MARS on symbol A for this program seen from a tile T (i0, i1) are therefore the
three sets {(i) : s(i0 − i1) < 2i < s(i0 − i1 + 1)}, {(i) : s(i0 − i1 − 1) < 2i < s(i0 − i1)} and
{(i) : s(i0 − i1) = 2i}. These MARS are shown in Figure 7.4.

General case

In the general case, computing the MARS for a single dependence leading to a non-
tiled space can be done as follows. Let D be the d-dimensional iteration space from which
the dependence originates, and E be the vector space such that D ⊂ E.; let A be the
destination space. Let B be the dependence with B(x⃗) = Ax⃗ + b⃗. Let (H1, . . . , Ht) be the
t tiling hyperplanes, (n⃗1, . . . , n⃗t) normal vectors to the tiling hyperplanes, (s1, . . . , st) be
the tile sizes.

For a tile coordinate be t⃗ = (i1, . . . , it), the tile is defined as

T (⃗t) = {x⃗ = (x1, . . . , xd) : ∀j ∈ {1, . . . , t} : sjij ⩽ x⃗ · n⃗j < sj(1 + ij)}
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Figure 7.4 – MARS obtained with a single affine dependence B(i, j) = (i).

We can compute, with t⃗ and another tile t⃗′ as a parameter, when the intersection of
B

〈
T (⃗t)

〉
and B

〈
T (t⃗′)

〉
is non-empty using affine operations. Let V (⃗t) be:

V (⃗t) =
{
t⃗′ : B

〈
T (⃗t)

〉
∩ B

〈
T (t⃗′)

〉
̸= ∅

}
which is obtainable by taking the parameter space of I (⃗t, t⃗′). V (⃗t) represents the tile
coordinates of all tiles which footprint on A intersects that of T (⃗t).

In Chapter 5, V (⃗t) is determined by browsing through neighboring tiles. The main
difficulty here is that V (⃗t) is potentially infinite. We will demonstrate that there are
only a finite number of distinct footprints overlapping with B

〈
T (t⃗′)

〉
. To determine them,

we suggest to decompose E into ker(A) and a supplementary I of ker(A), i.e.

E = I ⊕ ker(A)

Proposition 4 gives us that such a decomposition always exists, and per Proposition 3,
there is an orthonormal basis of the resulting space.

If r = rank(A), let (e⃗1, . . . , e⃗r) be a basis of I and (e⃗r+1, . . . , e⃗d) be a basis of ker(A)
such that (e⃗1, . . . , e⃗d) is an orthonormal basis of E. Let (n⃗p

1, . . . , n⃗p
t ) be the orthogonal
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projections of the n⃗is onto (e⃗1, . . . , e⃗r); in particular, these have zero r +1-th through d-th
coordinates.

For any t⃗′ ∈ V (⃗t), if t⃗′ − t⃗ = (δ1, . . . , δt), we can compute

W (t⃗′ − t⃗) =
t∑

i=1
δin⃗

p
i

which represents the part of the translation between tiles that results in translating the
images.

The most important result needed to construct the MARS is the ability to enumerate
all the footprints. The following proposition formalizes it:

Proposition 5. The set P (⃗t) =
{
W (t⃗′ − t⃗) : t⃗′ ∈ V (⃗t)

}
is finite, and for each con-

sumer tile t⃗′ ∈ V (⃗t), there exists a unique p⃗ ∈ P (⃗t) such that

B
〈
T (t⃗′)

〉
=

{
y⃗ + Ap⃗ : y⃗ ∈ B

〈
T (⃗t)

〉}
and that p⃗ is a constant vector, independent of t⃗ (i.e. the consumer tiles are invariant
by translation).

Proof. Completeness of footprints: Let t⃗′ ∈ V (⃗t), i.e. a tile which footprint intersects
that of tile t⃗. We know that W (t⃗′ − t⃗) = ∑t

i=1(t′
i − ti)n⃗p

i = p⃗ ∈ P (⃗t). Then:

B
〈
T (t⃗′)

〉
=

{
Ax⃗ + b⃗ : ∀i : sit

′
i ⩽ x⃗ · n⃗i ⩽ (1 + t′

i)si

}
=

{
Ax⃗ + b⃗ : ∀i : si(ti + (t′

i − ti)) ⩽ x⃗ · n⃗i ⩽ (1 + ti + (t′
i − ti))si

}
=

{
A

(
x⃗ + ∑t

i=1(t′
i − ti)n⃗i

)
+ b⃗ : ∀i : siti ⩽ x⃗ · n⃗i ⩽ (1 + ti)si

}
=

{
A

(
x⃗ + ∑t

i=1(t′
i − ti)n⃗p

i

)
+ b⃗ : x⃗ ∈ T (⃗t)

}
=

{
y⃗ + Ap⃗ : y⃗ ∈ B

〈
T (⃗t)

〉}
using the fact that A(n⃗i) = A(n⃗p

i ).
Uniqueness of p⃗: A is bijective between I (supplementary of ker(A) in E) and Im(A).

Therefore, because p⃗ ∈ P (⃗t) is in I, it is the unique element of I which Ap⃗ is the image.
Therefore, p⃗ is unique in the sense of this proposition.
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Finiteness of P (⃗t): For all t⃗′ ∈ V (⃗t), B
〈
T (t⃗′)

〉
is a translation of B

〈
T (⃗t)

〉
by Ap⃗

with some p⃗ ∈ P (⃗t). The coordinates of t⃗ are integers, therefore Ap⃗ is an integer linear
combination of the An⃗p

i s for i ∈ {1, . . . , t}. T (⃗t) being bounded, the footprint B
〈
T (⃗t)

〉
is

bounded, therefore only a finite number of translations of itself by Ap⃗s intersect with it.
Constantness of p⃗: Let t⃗0, t⃗1 ∈ Zt and t⃗′0 ∈ V (⃗t0), and p⃗ = W (t⃗′ − t⃗). Let t⃗′1 =

t⃗1 + (t⃗′0 − t⃗0). Then:

B
〈
T (t⃗′1)

〉
=

{
A

(
x⃗ + ∑t

i=1(t′
1i − t1i)n⃗i

)
+ b⃗ : ∀i : sit1i ⩽ x⃗ · n⃗i ⩽ (1 + t1i)si

}
=

{
A

(
x⃗ + ∑t

i=1(t1i − t1i + (t′
0i − t0i))n⃗i

)
+ b⃗ : x⃗ ∈ T (⃗t1)

}
=

{
Ax⃗ + ∑t

i=1(t′
0i − t0i)An⃗i + b⃗ : x⃗ ∈ T (⃗t1)

}
=

{
B(x⃗) + Ap⃗ : x⃗ ∈ T (⃗t1)

}
which means that the translation between the images of T (⃗t1) and T (t⃗′1) is the same as
that of T (⃗t0) and T (t⃗′0).

We can therefore enumerate P (⃗t), knowing that for each w⃗ ∈ P (⃗t), P −1(w⃗) represents
consumer tiles that all have the same footprint by B. That footprint is computed as
follows:

Φ(w⃗) = B
〈
T (⃗t) + w⃗

〉
where T (⃗t) + w⃗ =

{
x⃗ + w⃗ : x⃗ ∈ T (⃗t)

}
We can then compute the MARS. For all the combinations of w⃗s, i.e. for all C ∈

P
(
P (⃗t)

)
, we determine the MARS associated with that combination of consumer tiles:

MC =
⋂

w⃗∈C

(
Φ(w⃗) ∩ B

〈
T (⃗t)

〉)
\

⋃
w⃗ /∈C

(
Φ(w⃗) ∩ B

〈
T (⃗t)

〉)

7.4.4 Case of multiple, uniformly intersecting dependences

The previous section studied the case of a single dependence leading to a data space.
We look at the more frequent case of multiple dependences that all have the same linear
part.
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General case

If the dependences are uniformly intersecting, they all have the same linear part. This
means that they all have the same null space, and therefore the space decomposition into
E = I ⊕ ker(A) still applies.

Let there be Q dependences B1, . . . , BQ that are uniformly intersecting. This means
that there exists an unique matrix A such that:

∀i : Bi(x⃗) = Ax⃗ + b⃗i

Because all tiles share the same linear part, the space of consumer tiles for each de-
pendence will be the same up to a translation. Their linear part will notably be the
same, and the same argument as in the case above holds to guarantee that P (⃗t) ={
W (t⃗′ − t⃗) : t⃗′ ∈ V (⃗t)

}
is finite.

Let, by abuse of the notation, B
〈
T (⃗t)

〉
be the combined footprint of all dependences:

B
〈
T (⃗t)

〉
=

Q⋃
i=1

Bi

〈
T (⃗t)

〉

For each dependence Bi with i ∈ {1, . . . , Q}, we therefore compute Vi(⃗t) by intersecting
Bi

〈
T (t⃗′)

〉
and B

〈
T (⃗t)

〉
(i.e. we want the intersection of the footprint of one dependence

and the footprint of all other dependences); let

V (⃗t) =
Q⋃

i=1
Vi(⃗t)

The same decomposition E = vect(e⃗1, . . . , e⃗r) ⊕ vect(e⃗r + 1, . . . , e⃗d) is applicable due to
all Bis sharing the same linear part A.

We can give a more meaningful expression for P (⃗t):

P (⃗t) =

W (t⃗′ − t⃗) : t⃗′ ∈
Q⋃

i=1
Vi(⃗t)


which means that P (⃗t) is composed of the projections of the vectors leading to any con-
sumer tile of any dependence (and therefore takes into account the uniform translations
between dependences).
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The MARS can be computed by using P (⃗t). There are two differences with the case
when there is only a single dependence:

— The footprints of the consumer tiles Φ(w⃗) are specific to each dependence,
— The footprint of the tile t⃗ is the union of the footprint of all dependences.

For i ∈ {1, . . . , Q}, let Φi(w⃗) be:

Φi(w⃗) = Bi

〈
T (⃗t) + w⃗

〉
where T (⃗t) + w⃗ =

{
x⃗ + w⃗ : x⃗ ∈ T (⃗t)

}
The MARS are constructed by taking all subsets of consumer tiles from P (⃗t), and

looking at the points consumed only by these tiles.
Formally, let the cardinality of P (⃗t) be #C. For all K : 1 ⩽ K ⩽ #C and all

permutations σ of {1, . . . , #C}, let

C =
{
t⃗σ(1), . . . , t⃗σ(K)

}
and C = {t⃗σ(K+1), . . . , t⃗σ(#C)}

Then, a MARS is constructed according to the following rules:
— For each consumer tile coordinates t⃗′ ∈ C, there exists a dependence leading to

T (t⃗′),
— No dependence leads to a consumer tile t⃗′ ∈ C

These two conditions to form a MARS can be written as:

MC =
⋂

w⃗∈C

 Q⋃
i=1

Φi(w⃗) ∩ B
〈
T (⃗t)

〉 \
⋃

w⃗∈C

 Q⋃
i=1

Φi(w⃗) ∩ B
〈
T (⃗t)

〉
and there are at most card(P(P (⃗t))) = 2card(P (⃗t)) Cs and therefore as many MARS.

Example: uniform dependences

In this paragraph, we show that the computation of MARS using Chapter 5 coincides
with that proposed in this chapter when the dependences are uniform. Such dependences
are a special case of uniformly intersecting dependences, with a linear part being identity.
Note that the destination space is considered to be a data space, and therefore dependences
within a tile are counted in the footprint (self-consumption of data produced by a tile is
dealt with in the next section).

Consider the Jacobi 1D example:
— Domain: {(i, j) : 0 ⩽ i < N, 0 ⩽ j < M}, basis vectors e⃗i, e⃗j

153



An Irredundant Decomposition of Data Flow with Affine Dependences

Figure 7.5 – Flow-in dependences of tile T (⃗t) with uniformly intersecting dependences
(Jacobi 1D).

— Dependences : B1(i, j) = (i − 1, j − 1), B2(i, j) = (i, j − 1), B3(i, j) = (i + 1, j − 1)
— Tiling hyperplanes : H1 : i + j (n⃗2 = (1, 1)), H2 : j − i (n⃗2 = (−1, 1))
— Tile size : s ∈ N∗

We compute the unified footprint B
〈
T (⃗t)

〉
:

B
〈
T (⃗t)

〉
= {(i, j) : si1 ⩽ i + j + (2 − p) < s(1 + i1)

∧si2 ⩽ j − i + p < s(1 + i2) : p ∈ {0, 1, 2}}

Notably, if we confuse the data space A(i, j) and the iteration space (i, j) (that is, each
cell of A contains the result of one iteration), and we restrict the footprint to those points
outside tile T (⃗t), we obtain the flow-in of that tile as in Figure 7.5, corresponding to the
same definition as in Chapter 5.

We determine the individual Vi(⃗t)s:

V1(⃗t) = {(i1, i2 − 1), (i1, i2), (i1 + 1, i2 − 1), (i1 + 1, i2)}

V2(⃗t) = {(i1, i2), (i1 + 1, i2), (i1, i2 − 1), (i1 − 1, i2), (i1, i2 + 1)}

V3(⃗t) = {(i1, i2), (i1 − 1, i2), (i1, i2 + 1), (i1 − 1, i2 + 1)}
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Figure 7.6 – Consumer tiles of array A with Jacobi 1D dependences, sharing their footprint
with tile T (⃗t).

which gives

V (⃗t) = {(i1, i2), (i1 − 1, i2), (i1, i2 + 1), (i1 − 1, i2 + 1), (i1 + 1, i2),

(i1, i2 − 1), (i1 + 1, i2 − 1)}

As ker(A) = {0}, we easily get that E = vect(e⃗i, e⃗j) and therefore constructing the
W (t⃗′ − t⃗) is straightforward, yielding the following P (⃗t):

P (⃗t) = {(0, 0), (−1, 0), (0, 1), (−1, 1), (1, 0), (0, −1), (1, −1)}

This P (⃗t) means there are seven tiles (including t⃗ itself) which footprint (i.e. any depen-
dence) intersects with B

〈
T (⃗t)

〉
. These consumer tiles are shown in Figure 7.6.

For the sake of shortness, we will not enumerate all combinations of consumer tiles.
The MARS that appear after partitioning the footprints stemming from all consumer tiles
are shown in Fig.7.7.

Again, if we confuse the iteration and data spaces, we can obtain the same MARS
as computed in Chapter 5 by removing those MARS that are contained within T (⃗t);
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Figure 7.7 – MARS for uniformly intersecting dependences (Jacobi 1D)

the result of this operation, shown in Figure 7.8, illustrates the coincidence between the
MARS computed using uniform and affine dependences.

7.4.5 Case of multiple, non-uniformly intersecting dependences

We now consider the case where the dependences are not uniformly intersecting. In
this case, the main difference is that dependences no longer share the same linear part.
Therefore, we need to write every dependence separately:

∀i ∈ {1, . . . , Q} : Bi(x⃗) = Aix⃗ + b⃗i

and each dependence having its own null space, there is one orthonormal basis of the null
space and a supplementary per dependence, and therefore one projection Wi(t⃗′ − t⃗) per
dependence.

Single null space requirement

Because the dependences may no longer have the same linear part, each linear part
may have a different null space. When considering any consumer tile t⃗′ ∈ V (⃗t), it is no
longer true that the projection of t⃗′ − t⃗ onto each null space is independent of the tile
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Figure 7.8 – Coincidence between MARS computed with the uniform dependence method,
and those computed with the affine method.

coordinates. The invariance by translation of a tile from Proposition 5 therefore no longer
holds.

Figure 7.9 gives an example of this case with two dependences: B1(i, j) = (i − j) and
B2(i, j) = (i + j). Here, the p⃗s depend on t⃗. Due to the dependence B1, all the tiles
northwest of each tile will intersect with its footprint; but the dependence B2 generates a
footprint southwest, also consumed (because of B1) by all tiles to its northwest.

In Figure 7.9, we show the W1(t⃗′ − t⃗) : ker(A1) points to the northeast, and I1 (sup-
plementary of ker(A1)) points to the northwest, parallel to the dependence B2.

A sufficient condition for a position-independent footprint to exist is that all depen-
dences have the same null space:

Proposition 6. If all dependences have the same null space, then all tiles have the same
footprint up to a translation. Otherwise said, for any δ⃗ ∈ Zt, there exists u⃗ ∈ Im(B) such
that:

For each t⃗ ∈ Zt, if t⃗′ = t⃗ + δ⃗, then

Q⋃
i=1

Bi

〈
T (t⃗′)

〉
=

y⃗ + u⃗ : y⃗ ∈
Q⋃

i=1
Bi

〈
T (⃗t)

〉

157



An Irredundant Decomposition of Data Flow with Affine Dependences

ker(B1)

I1

W1(t'-t)

W1(t'-t)

B2(i, j) = (i+j)

B1(i, j) 
= (i-j)

Figure 7.9 – Non-uniformly intersecting dependences do not guarantee that the vectors
Wi(t⃗′ − t⃗) do not depend on t⃗, i.e. each tile’s footprint is not necessarily a translation of
another tile’s footprint.
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Proof. We know that the sought u⃗ exists for each dependence per Proposition 5: for each
i ∈ {1, . . . , Q}, there is a u⃗i such that

Bi

〈
T (t⃗′)

〉
=

{
y⃗ + u⃗i : y⃗ ∈ Bi

〈
T (⃗t)

〉}
This u⃗i is constructed as:

u⃗i =
t∑

i=1
(t′

i − ti)n⃗p
i

where the n⃗p
i s are the projections of the normal vectors onto a supplementary of the null

space of each dependence. Because all of the dependences have the same null space, it
comes that all of the u⃗i have the same projection onto the same supplementary of that
null space. Therefore, they are all equal.

Constructon of MARS with a single null space

We must prove the requirements stated in Section 7.4.2, proved in the previous two
cases, still hold to compute the MARS.

The uniqueness of p⃗ (invariance by translation of a tile) has become a hypothesis,
and the dependences must satisfy this requirement to compute MARS. The previous
paragraph only gave a sufficient condition for it to be satisfied.

The finiteness (and enumerability) of the set representatives of consumer tiles still
holds if the dependences all have the same null space.

We can construct the MARS using the same procedure as in 7.4.4: the footprints of
all dependences are distinct, but the null space is the same, therefore the same definition
for P (⃗t) =

{
W (t⃗′ − t⃗)

}
as in 7.4.4 holds.

Case of multiple null spaces

If the dependences have multiple null spaces, there is no guarantee that MARS can
be constructed (see 7.4.5 for a counter-example).

Due to the null spaces being different, there is no guarantee that:
— The consumer tiles which footprint intersects with that of T (⃗t) are located at

uniform translations of t⃗ (see counter-example at 7.4.5), and
— The projections of translations from t⃗ to all other consumer tiles onto every null

space are finite sets of vectors, i.e. the method used previously to obtain a finite
set of representative consumer tiles still gives a finite set.
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We propose a solution to the second point: we can obtain finite sets of translation
vectors to represent all consumer tiles for all dependences, although these translations
may be parametric.

The idea is to only consider the projection of dependences that contribute to a tile’s
footprint intersecting with B

〈
T (⃗t)

〉
; and make a partition of all the sets of consumer tiles

according to the contributing dependences.
Indeed, it is equivalent to say that a dependence Bi contributes to the consumption,

and that the consumer tile t⃗′ is in Vi(⃗t). Multiple dependences contribute to the consump-
tion if and only if t⃗′ is simultaneously in all the Vi(⃗t)s of these dependences (i.e. it is in
their intersection).

Using this fact, we can partition the space of all consumer tiles according to which
dependences contribute to each family. In other words, given D ∈ P({1, . . . , Q}), we
compute:

FD (⃗t) =
⋂

i∈D

Vi(⃗t) \
⋃

i/∈D

Vi(⃗t)

Proposition 7. Let t⃗′ ∈ ⋃Q
i=1 Vi(⃗t). There exists a unique D ∈ P({1, . . . , Q}) (i.e. a

unique D ⊂ {1, . . . , Q}) such that t⃗′ ∈ FD. In other words, {FD : D ⊂ {1, . . . , Q}} is a
partition of the set of all consumer tiles ⋃Q

i=1 Vi(⃗t).

Proof. The construction of the FD (⃗t)s, given that {1, . . . , Q} is a finite set, guarantees
the fact all the FDs are disjoint and therefore creates a partition of ⋃Q

i=1 Vi(⃗t).

For each D ∈ P({1, . . . , Q}), FD (⃗t) contains a family of consumer tiles (possibly
empty). If it is not empty, then using the same reasoning as in Proposition 5 we can prove
the following proposition:

Proposition 8. Let D ∈ P({1, . . . , Q}). Then:

PD (⃗t) =
{
Wi(t⃗′ − t⃗) : t⃗′ ∈ FD ∧ i ∈ D

}
is a finite set.

Proof. Considering that FD (⃗t) ⊂ ⋂
i∈D Vi(⃗t), Proposition 5 can be applied to each indi-

vidual Vi(⃗t).

The effects of parametric vectors leading to consumer tiles are unknown at this point.
Whether MARS can be constructed in this case is left as an open question.
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7.4.6 Case of dependences between tiled spaces

Dependences that lead to tiled spaces correspond to the passing of intermediate re-
sults between tiles. These dependences, when uniform, were supported in Chapter 5, and
transmission of intermediate results was done through MARS transiting in the main mem-
ory. This produced a partitioning of the flow-out set and flow-in set of each tile. In this
section, we extend this principle to affine dependences.

Uniform dependences used in Chapter 5 guaranteed that the producer and consumer
were in the same space (which is not the case with affine dependences), and the identity
linear part of the dependences gave that the image of a tile by a dependence was a
translation of the tile itself.

The main problem with having different consumer and producer spaces is the relation
between the consumer tiles’ “footprint” in the producer tiles’ space, and the producer
space tiling itself: the footprints of the consumer tiles by the dependences produce a tiling
that may not match with the existing tiling of the producer space.

In the previous sections (7.4.3, 7.4.4, 7.4.5), the existence of MARS relied on the
footprints of the consumer tiles (in a tiled iteration space) in the data space (hereafter
destination space) being independent of the consumer tile (i.e. the origin of the
dependence). In this section, the destination space is a tiled iteration space, and we want
the tiling induced by the dependence to “match” the existing tiling or be finer than it. To
this aim, we add the requirement is that the same footprints are independent of the
producer tile (i.e. the destination of the dependence).

Assuming there are t tiling hyperplanes in the source space, and q tiling hyperplanes
in the destination space, let their (unit) normal vectors be respectively n⃗1, . . . , n⃗t and
d⃗1, . . . , d⃗q and their tile sizes s1, . . . , st and z1, . . . , zq. Let the scaled normal vectors (trans-
lation of one tile along each hyperplace) be n⃗1, . . . , n⃗t and d⃗1, . . . , d⃗q.

Let there be Q dependences B1, . . . , Bq. Let t⃗ = (t1, . . . , tt) ∈ CT be a consumer tile
vector coordinate, and let u⃗ = (u1, . . . , uq) ∈ DT be a producer tile vector coordinate (in
the destination space of the dependences). Let a tile in the destination space be designated
as U (⃗t) using a definition analogous to that of the source space (see 7.3). Let the consumer
tiles of a destination tile u⃗ ∈ DT be

X(u⃗) =
{
t⃗ ∈ CT : ∃j ∈ {1, . . . , Q} : Bj

〈
T (⃗t)

〉}
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and a tile translation vector in the destination space be expressed as:

N(u⃗) =
q∑

k=1
ukd⃗k

The following proposition is a conjecture. It establishes the equivalence between a
translation of a tile in the producer space and the translation of multiple tiles in the
consumer space.

Proposition 9. We have the following equivalence:

∀u⃗, u⃗′ ∈ DT, ∀t⃗ ∈ X(u⃗), ∀i ∈ {1, . . . , Q} :

∃t⃗′ ∈ X(u⃗′) : Bi

〈
T (t⃗′)

〉
=

{
y⃗ + N(u⃗′ − u⃗) : y⃗ ∈ Bi

〈
T (⃗t)

〉}
⇕

∀i ∈ {1, . . . , Q}, ∀j ∈ {1, . . . , t}, ∀k ∈ {1, . . . , q} :

∃m ∈ Z : m((Ain⃗j) · d⃗k)d⃗k = d⃗k

If proved, this proposition then establishes a condition on the dependences for there
to be a unique control flow, independent of the tile coordinates, for both the MARS to
produce (by each producer tile) and the MARS to retrieve (by each consumer tile).

7.5 Related work

This work introduces a partitioning of data arrays and iteration spaces based on the
consumption pattern of each data. Existing work on partitioning aims at locality in the
first place, before memory access optimization. Our work relies on a locality optimization
(tiling) and seeks to further improve memory accesses. This work is made specific by
the combination of its objective (partitioning data for spatial locality) and its method
(fine-grain partitioning where iteration spaces are already partitioned).

7.5.1 Goal of partitioning

Existing work on partitioning mainly targets locality, such as Agarwal et al. [2]. Our
work uses the same definitions and follows the same reasoning as this paper, with a differ-
ent objective: while [2] seeks to adjust the tile size and shapes for locality (i.e. the footprint
size of each tile), we seek to exhibit spatial locality (data contiguity) opportunities. In
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that sense, our work is not the first to propose a partitioning of iteration and data spaces
using affine dependences; however, the desired result (with a spatial locality objective)
differs, and so the construction procedure and hypotheses too.

Parallelism is also an objective: [88] perform iteration and data space partitioning,
then fuse partitions to maximize computation parallelism while preserving locality. The
resulting code is suitable for CPU and GPU implementation with a cache hierarchy;
our partitioning scheme does not follow the temporal utilization of the retrieved data
within a tile. It therefore is more adapted to scratchpad memories, and scenarios memory
accesses can be decoupled from computations, because grouping data for spatial locality
requires significant on-chip data movement. This makes our approach more suitable for
task-level pipelined (read, execute, write) FPGA or ASIC accelerators, or for small CPU
tiles (register tiling) where the register space can be considered a scratchpad.

7.5.2 Partitioning methods

Instead of partitioning the inter-tile communicated data with a tiling already known,
one can consider partitioning the inputs and outputs, and deriving tiled iteration space
tiling from the inputs or outputs themselves. This approach is taken in [88] where the tile
shapes are iteratively constructed from the (tiled) consumers of the iterations or data.

Monoparametric tiling [40] is performed using an inverse approach as ours: the data
spaces (variables) are partitioned into tiles, and then the iteration space is partitioned. It
requires the program to be represented as a system of affine recurrence equations, where
loops do not exist; instead, iteration spaces start to exist at code generation time, when a
variable needs to be computed. The main difference is that our partitioning scheme must
be applied after loop tiling, and therefore after most locality optimizations.

Dathathri et al. [7, 23] partitions the iteration spaces for inter-node communications in
distributed systems, in a manner similar to MARS: the flow-out iterations of each tile are
partitioned by dependences (dependence polyhedra) and consumer tiles (receiving tiles).
While both approaches are similar with respect to how data is grouped and transmitted,
ours is extended to data space partitioning. Our approach however adds a restriction on
the dependences: we require that the flow-out partitions are invariant across all tiles, so
that a simple, unique control flow can be derived. Our approach can then be used to
create position-independent accelerators that can process any tile in the iteration space.

It is noteworthy that both our approach and [23], along with other domain-specific
inter-node data partitioning schemes (e.g., [90]) acknowledge that, to achieve a high band-
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width utilization of the RAM or network, inter-tile (inter-node) communications need a
specific data layout inferred using static analysis.

7.6 Conclusion

Optimizing programs with respect to memory accesses is a key to improving their
performance. This chapter proposes an analysis method to automatically partition data
and iteration spaces from the polyhedral representation of a program when loop tiling is
applied.

Partitioning data arrays is already known to improve spatial locality and, in turn,
access performance. In this chapter, we propose a fine-grain partitioning scheme that
can be used to optimize spatial locality for both iteration and data spaces based on the
polyhedral representation of a program. Although this chapter only proposes a theoretical
study, the effects of partitioning the data spaces, e.g. with data tiling, are known to be
beneficial; and likewise, Chapter 6 has shown that partitioning intermediate results and
deriving a specific allocation yields performance improvements.

Implementing MARS for affine dependences would incur additional engineering than
simply allocating intermediate results: the input data, usually intelligible to the user,
would need to be transformed prior to execution; likewise, the inverse transformation
would need to occur prior to handing back the results to the user. The profitability of
partitioning the input data into MARS would depend on the time such a transformation
would take.
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Chapter 8

CONCLUSIONS AND PERSPECTIVES

This chapter summarizes and closes the work of this dissertation, and proposes future
research directions.

8.1 Conclusions

The continued increase in parallelism exploitation and of compute power is driving
programs towards the limits of current memory architectures in terms of bandwidth. To
cater to the needs of each application, memory architectures are becoming more diverse,
with a landscape of bandwidth, latency and capacity options. To fully exploit the band-
width without suffering from the effects of latency, developers must adapt where the data
is placed and how it is accessed. Manually creating data layouts is a complicated task
because of the amount of program re-engineering it requires, and even more so if the
program is a hardware design.

This dissertation addresses the issue for domain-specific hardware, by presenting auto-
mated methods to derive memory allocations from a program. It sets itself within a context
where application-specific, ad-hoc memory allocations are sought, notably to relieve the
memory-boundness of specific applications. This problem is especially important to tackle
with intrinsically memory-bound applications, such as matrix-vector products [26].

This dissertation shows that it is possible to exhibit contiguous memory layouts and
access patterns from the polyhedral representation of a program; in this respect, it pro-
poses an allocation for accelerators using high-bandwidth memories seeking the longest
contiguous accesses (Chapter 4), and an irredundant allocation for hardware accelera-
tors seeking to maximize the usefulness of the data on the bus while keeping as much
contiguous accesses as possible (Chapter 6).

A second contribution brought in by this dissertation is an automation aspect: both
allocations proposed are accompanied by algorithms and methodologies to automatically
allocate the data and create access functions. This makes it possible to create compiler
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passes transparently implementing the proposed allocations. Chapters 4 and 5 describe
the mechanisms such compiler passes may implement to generate the memory layouts and
access functions.

A third contribution of this dissertation, used as a core element to build memory
allocations, are partitionings of the iteration and data spaces of polyhedral programs.
While we only suggest a use case for memory allocation, these partitionings can be used
for other purposes such as fault tolerance. The partitioning methods are based on the
program’s dependences, and two cases are studied: Chapter 5 covers the case of uniform
dependences, and Chapter 7 covers the broader case of affine dependences.

8.2 Perspectives

The work brought in by this dissertation consists in memory allocations for domain-
specific accelerators, and supporting polyhedral compilation analysis and transformation
techniques. These works are very specific, yet leave unexplored areas and open perspectives
on multiple fronts. We finish this dissertation by listing a few of them.

8.2.1 On the polyhedral compilation aspect

In this dissertation, we have studied memory allocations for simple cases of tiling,
where the tiling hyperplanes verify certain hypotheses (e.g. they are canonical in Chap-
ter 4, linearly independent from each other in Chapter 7). Further extending it to relax
these hypotheses may enable more programs to benefit from the memory allocations pre-
sented in this work.

Prior work, e.g. [92], has shown overlapped tiling brings performance benefits due to
additional parallelism at the expense of redundant computations. Our work currently does
not support such tiles, where the data flow analysis would need to take into account the
redundant computations.

A refined definition of tiles and tiling hyperplanes could lead to the support of tiling
schemes with non-linearly independent hyperplanes, or with specific cuts such as diamond
tiling [9], monoparametric tiling [40] or fancier tile shapes such as [91].
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8.2.2 On using more hardware properties

The work of this dissertation focuses on finding data flowing from tile to tile and gen-
erating allocation functions. Chapters 5 and 7 propose to partition the data according to
the consumption pattern, into coarse-grain blocks. This results in block-level allocations,
where the layout within each block of data is not specified. Using information on the
target architecture, it is possible to tune the inner layout of such blocks to relieve bank
or port contention. This is especially true when the data is partitioned into banks (e.g.
into Block RAMs inside FPGA chips, or in HBM stacks).

Another aspect is minimizing the access latency in the global memory. Optimizing the
layout of the MARS themselves as is done in Chapter 6 is done without respect to the
structure of the off-chip memory. The access latency of that external memory contributes
to the total access latency, and it therefore should be minimized. When DDR memories
are used, access latency is for instance lower for data in different banks than in different
rows of the same bank. Knowing such internals of the memory, other placements of MARS
minimizing the access latency while preserving contiguity (and therefore a low number of
transactions) could further improve performance.

8.2.3 On use cases of polyhedral-based allocations

The proposed methods mainly target domain-specific hardware architectures that
manange memory accesses on their own. However, we can suggest they be extended to
more generic architectures, and not necessarily for bandwidth optimization. Data contigu-
ity can, for instance, enable automatic vectorization, and contribute to a better utilization
of vector units with fewer on-chip, register-to-register movements. Using MARS on regis-
ter tiles [42] would be another angle of attack to a register allocation problem tackled in
domain-specific optimizers such as YASK [84].
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Titre : Dérivation automatique d’allocations mémoire pour l’accélération de programmes dans
le modèle polyédrique

Mot clés : Mémoire, modèle polyédrique, disposition de données, compilateurs

Résumé : À mesure que les processeurs
gagnent en puissance de calcul, leurs de-
mandes en accès mémoire s’accroissent de
différentes manières : certains calculs exigent
une latence faible pour des accès aléatoires,
d’autres un débit important et des accès ré-
guliers. Pour répondre à cette demande, les
architectures et technologies mémoire se di-
versifient. Il est alors nécessaire que les pro-
grammes et les accélérateurs qui les exé-
cutent s’adaptent pour effectuer des accès de
faible latence et de haut débit; notamment,
sont à adapter la suite des accès en mémoire
et la disposition des données. Si ces tâches
sont réalisables manuellement, leur automa-

tisation épargne au développeur d’avoir à les
rechercher.

Dans cette thèse, on propose plusieurs
méthodes automatisées de disposition des
données pour des accélérateurs FPGA. Pour
des mémoires à haut débit et haute latence
d’accès, on cherche à maximiser l’utilisation
de la bande passante; pour des mémoires à
plus faible débit, on minimise la quantité d’ac-
cès non valorisés en préservant la contiguité.
On introduit à cet effet des analyses mathé-
matiques, des allocations de mémoires spéci-
fiques ainsi que des transformations automa-
tisées de programme pour obtenir des accélé-
rateurs FPGA optimisés.

Title: Automating the derivation of memory allocations for acceleration of polyhedral programs

Keywords: Memory, polyhedral model, data layout, compilers

Abstract: As processors compute power
keeps increasing, so do their demands in
memory accesses: some computations will re-
quire a higher bandwidth and exhibit regular
memory access patterns, others will require
a lower access latency and exhibit random
access patterns. To cope with all demands,
memory technologies are becoming diverse. It
is then necessary to adapt both programs and
hardware accelerators to the memory technol-
ogy they use. Notably, memory access pat-
terns and memory layouts have to be opti-
mized. Manual optimization can be extremely
tedious and does not scale to a large number

of processors and memories, where automa-
tion becomes necessary.

In this Ph.D dissertation, we suggest sev-
eral automated methods to derive data layouts
from programs, notably for FPGA accelera-
tors. We focus on getting the best throughput
from high-latency, high-bandwidth memories
and, for all kinds of memories, the lowest re-
dundancy while preserving contiguity. To this
effect, we introduce mathematical analyses to
partition the data flow of a program with uni-
form and affine dependence patterns, propose
memory layouts and automation techniques to
get optimized FPGA accelerators.
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